首页> 外文期刊>Packaging, transport, storage & security of radioactive material >Computational Fluid Dynamics Simulations Of Fuel Cladding And Basket Surface Temperatures In Multipurpose Canister Rail Cask During Normal Transport
【24h】

Computational Fluid Dynamics Simulations Of Fuel Cladding And Basket Surface Temperatures In Multipurpose Canister Rail Cask During Normal Transport

机译:正常运输过程中多用途罐式轨道桶中燃料包壳和料篮表面温度的计算流体动力学模拟

获取原文
获取原文并翻译 | 示例
           

摘要

A two-dimensional finite volume model of a Multi-Purpose (MPC) in a rail cask with twenty-one pressurised water reactor (PWR) assemblies inside was constructed. Steady state thermal simulations were performed for a range of fuel heat generation rates, for both nitrogen and helium cover gas, and different fuel cladding emissivities. Geometrically accurate computational fluid dynamics (CFD) simulations were employed to calculate buoyancy induced motion in, and natural convection and radiation heat transfer across, all gas filled regions. The results are compared to stagnant-gas CFD (S-CFD) simulations in the same geometrically accurate mesh, and to simulations that employ Effective Thermal Conductivities (ETC) in a mesh with homogenized fuel/ cover gas regions. The cask Thermal Dissipation Capacity (Q_(TDC)) is defined as the fuel heat generation rate that causes the fuel cladding to reach its allowed temperature limit. Q_(TDC) is 27% larger when helium is the backfill gas than for nitrogen. The Qtdc predicted by the geometrically accurate CFD and S-CFD models is essentially the same, but 3-6% higher than that predicted by the homogenized ETC model. A ten percent increase in cladding emissivity leads to less than a 1% increase in Q_(TDC). The non-isothermal temperature profiles of the fuel basket surfaces determined in this work will be used as boundary conditions in future benchmark experiments. The thermal resistance in two narrow gaps (between the fuel basket and its support brackets, and between the MPC and the transport over-pack), and between the cask outer surface and the environment, account for a significant fraction of the total thermal resistance between the hottest fuel and the environment. Uncertainty in those resistances affects the conclusions of this work.
机译:构造了带有21个压水反应堆(PWR)组件的铁桶中的多功能(MPC)的二维有限体积模型。针对氮气和氦气覆盖气体以及不同的燃料包壳发射率,在一定范围内的燃料热量产生速率下进行了稳态热模拟。采用几何精确的计算流体动力学(CFD)模拟来计算所有气体填充区域中的浮力诱导运动以及自然对流和辐射热传递。将结果与相同几何精确网格中的停滞气体CFD(S-CFD)模拟进行比较,并与在均质燃料/覆盖气体区域的网格中采用有效导热率(ETC)的模拟进行比较。桶的散热能力(Q_(TDC))定义为使燃料包壳达到其允许的温度极限的燃料发热量。当氦气作为回填气体时,Q_(TDC)比氮气大27%。几何精确的CFD模型和S-CFD模型预测的Qtdc基本相同,但比均质的ETC模型预测的Qtdc高3-6%。包层发射率增加百分之十会导致Q_(TDC)的增加少于百分之一。在这项工作中确定的燃料篮表面的非等温温度曲线将在以后的基准实验中用作边界条件。在两个狭窄的间隙(燃料篮及其支撑架之间,MPC与运输包装件之间)以及酒桶外表面与环境之间的热阻占了总热阻的很大一部分。最热的燃料和环境。这些阻力的不确定性影响这项工作的结论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号