首页> 外文期刊>Organic Electronics >Limiting factors of photon-to-current conversion in polymer/ nanocrystal bilayer hybrid solar cells: An analytical quantum efficiency model study
【24h】

Limiting factors of photon-to-current conversion in polymer/ nanocrystal bilayer hybrid solar cells: An analytical quantum efficiency model study

机译:聚合物/纳米晶体双层混合太阳能电池中光子到电流转换的限制因素:分析量子效率模型研究

获取原文
获取原文并翻译 | 示例
           

摘要

This paper introduces an analytical external quantum efficiency (EQE) model of planar hybrid solar cells (HSCs) based on photon-to-current conversion processes and uses this to investigate the factors that limit the maximum EQE (EQE_m) of devices; i.e., the photon absorption coefficient α, exciton diffusion coefficient D_z, exciton lifetime t_z, exciton dissociation rate k_(dis), electron diffusion coefficient D_e, electron lifetime τ_e, nanocrystals thickness d, and thickness of the polymer l. Our simulations indicate that relying solely on modifying k_(dis), D_e, or τ_e cannot achieve a breakthrough increase in the EQE_m of planar HSCs. However, increasing α, D_z, or τ_z could potentially lead to a large EQE_m (30-100%), especially in the context of high k_(dis) values. Moreover, the calculation results indicate that although both D_z and τ_z contribute to the exciton diffusion length (L_z) via the equation L_z~2 = D_zτ_z, the EQE_m has an asymmetric dependence on these variables. With a small k_(dis) (i.e., <10~4 cm/s), an increase in D_z results in an initial increase and then decrease in EQE_m, resulting in a peak value that increases with increasing k_(dis). When fcdis is sufficiently large (~105 cm/s), the EQE_m becomes saturated after the initial increase. Thus, although an increase in D_z can adversely affect device performance when the k_(dis) is lower than 10~4 cm/s, increasing τ_z always improves device performance, regardless of large k_(dis) becomes. This behavior can be attributed to the detrimental effect of excitons accumulating at the D/A interface, and can be used to optimize the material design and device engineering of planar HSCs and related solar cells for maximum photon-to-current conversion performance. In addition, we also demonstrate that the model can fit to the experimental data.
机译:本文介绍了一种基于光子到电流转换过程的平面混合太阳能电池(HSC)的外部量子效率分析模型,并以此来研究限制器件最大EQE(EQE_m)的因素。即,光子吸收系数α,激子扩散系数D_z,激子寿命t_z,激子解离速率k_(dis),电子扩散系数D_e,电子寿命τ_e,纳米晶体厚度d和聚合物l的厚度。我们的仿真表明,仅依靠修改k_(dis),D_e或τ_e不能实现平面HSC的EQE_m突破性增长。但是,增加α,D_z或τ_z可能会导致较大的EQE_m(30-100%),尤其是在k_(dis)值较高的情况下。此外,计算结果表明,尽管D_z和τ_z都通过等式L_z〜2 =D_zτ_z贡献了激子扩散长度(L_z),但EQE_m对这些变量具有非对称依赖性。当k_(dis)较小时(即<10〜4 cm / s),D_z的增加导致初始值增加,然后EQE_m减小,从而导致峰值随k_(dis)的增加而增加。当fcdis足够大(〜105 cm / s)时,EQE_m在初始增加后变得饱和。因此,尽管当k_(dis)低于10〜4 cm / s时,D_z的增加可能会对器件性能产生不利影响,但是增大τ_z总是会改善器件性能,而与k_(dis)变大无关。此行为可归因于激子在D / A界面处积聚的有害影响,并可用于优化平面HSC和相关太阳能电池的材料设计和器件工程,以实现最大的光子-电流转换性能。此外,我们还证明了该模型可以拟合实验数据。

著录项

  • 来源
    《Organic Electronics》 |2017年第8期|108-116|共9页
  • 作者单位

    School of Science, Huzhou University, Huzhou, 313000, Zhejiang Province, China,Key Lab of Optoelectronic Materials and Devices, Huzhou University, Huzhou, 313000, Zhejiang Province, China;

    School of Science, Huzhou University, Huzhou, 313000, Zhejiang Province, China,Key Lab of Optoelectronic Materials and Devices, Huzhou University, Huzhou, 313000, Zhejiang Province, China;

    School of Science, Huzhou University, Huzhou, 313000, Zhejiang Province, China,Key Lab of Optoelectronic Materials and Devices, Huzhou University, Huzhou, 313000, Zhejiang Province, China;

    School of Engineering, Huzhou University, Huzhou, 313000, Zhejiang Province, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Bilayer hybrid solar cells; Quantum efficiency model; Photon-to-current conversion;

    机译:双层混合太阳能电池;量子效率模型;光子到电流的转换;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号