首页> 外文期刊>Optics and Lasers in Engineering >Shock-wave distortion cancellation using numerical recalculated intensity propagation phase holography
【24h】

Shock-wave distortion cancellation using numerical recalculated intensity propagation phase holography

机译:使用数值重新计算的强度传播阶段全息术进行冲击波失真

获取原文
获取原文并翻译 | 示例
       

摘要

Digital holography is a three-dimensional (3D) measurement technique that can be used to quantitatively determine the size and 3D location of the objects inside a field-of-view. However, in systems where refractive index gradients are present, variations in optical phase due to high-speed shock-waves or low-speed thermal gradients can cause distortions that obscure objects. While techniques like phase-conjugate digital in-line holography and iterative phase measurement techniques have been developed in the past for phase removal or phase measurement, they require either nonlinear four-wave-mixing or iterative algorithms to operate. In this paper, we demonstrate a novel recalculated intensity propagation phase holography (RIPPH) method that captures distorted holograms using low-power continuous lasers, refocuses the hologram to the plane of the distortion, and cancels the phase distortion numerically in a single post-processing step. The resulting hologram can be numerically refocused to provide distortion-free 3D information describing objects that absorb or scatter light. In RIPPH, only the approximate z-locations of the phase distortions are needed, making this method significantly faster to compute than phase retrieval methods. Theoretical simulations are first used to describe and assess the distortion removal process. Experiments are then conducted to demonstrate at least 3x lower edge distortion for RIPPH compared to traditional digital in-line holography. We demonstrate, for the first time, how phase distortions from supersonic air jets, particle-laden spherically expanding shock-waves, and convectively-driven thermal gradients are numerically cancelled and show how objects of interest are accurately recovered.
机译:数字全息术是一种三维(3D)测量技术,可用于定量地确定视野中对象的大小和3D位置。然而,在存在折射率梯度的系统中,由于高速冲击波或低速热梯度引起的光学相位的变化会导致模糊物体的失真。虽然过去已经开发了相位共轭数字在线全息和迭代相测量技术的技术进行相位去除或相位测量,但它们需要非线性的四波混合或迭代算法来操作。在本文中,我们展示了一种新的重新计算强度传播阶段全息(RIPPH)方法,其使用低功率连续激光捕获失真的全息图,将全息图重新聚焦到失真的平面,并在单个后处理中以数字方式取消相位失真步。得到的全息图可以在数值上重新聚焦以提供无失真的3D信息,描述吸收或散射光的物体。在RIPPH中,只需要相位失真的近似z位置,使得该方法比相位检索方法更快地更快地更快。理论模拟首先用于描述和评估变形去除过程。然后进行实验以证明与传统的数字在线全息术相比,Ripph的至少3x下边缘失真。我们首次证明来自超音速空气喷射,叠加的球形膨胀的冲击波的相位失真以及对流驱动的热梯度是数值取消的,并且显示了如何精确地恢复感兴趣的对象。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号