...
首页> 外文期刊>Optical Switching and Networking >Optical Grooming Capable Wavelength Division Multiplexing node architecture for beyond 100 Gbps transport
【24h】

Optical Grooming Capable Wavelength Division Multiplexing node architecture for beyond 100 Gbps transport

机译:超过100 Gbps传输的光梳理能力波分复用节点架构

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Mixed-line-rate wavelength division multiplexing (WDM) networks with discrete channel spacing generalize the fixed grid WDM networks and can support mixed-electronic-optical grooming efficiently. For optical transport networks with beyond 100 Gbps containers, optical layer grooming is needed to take full advantage of variable grid spacing, as well as to improve spectrum utilization. In this work, we propose two new node architectures, Optical Grooming Capable Optical Cross Connect (OGC-OXC) and Optical Grooming Capable Reconfigurable Optical Add/Drop Multiplexer (OGC-ROADM), which are capable of optical layer grooming for optical transport networks beyond 100 Gbps and will be generally called Optical Grooming Capable WDM (OGC-WDM) networks. For OGC-WDM, we investigate dimensioning of the number of fibres per link and add/drop degree per wavelength at each node and propose two new heuristic algorithms, First-Fit and Weighted-Fit. Also, we analyse the expected spectrum utilization for mixed-electronic-optical grooming in OGC-WDM, which can also reduce the required resources. Simulation studies show the following: For dimensioning of OGC-WDM, in comparison to the First-Fit, the Weighted-Fit heuristic requires 25% less number of fibres and 60% less add/drop degree. Also, if the size of topology is large and range of normalized distance of requests is large, Weighted-Fit requires smaller scale of add/drop components, and it has 50% more fibres to add/drop degree ratio, and 50% less number of fibres and add/drop degree product, the latter of which is crucial in scaling OGC-ROADM nodes. We also find that the execution speed of First-Fit is ten times faster than that of Weighted-Fit. In addition, the mixed-electronic-optical grooming can reduce required resources. With OGC-OXC node architecture, if no extra fibre is allowed, the overhead of grid allocation reaches 33%, and if one extra fibre is allowed, the overhead of grid allocation reaches 12.6%. However, if electronic grooming is allowed, the corresponding overhead of grid allocation reaches 18.75% and 7.49% respectively. To control the cost of OGC-ROADM, cyclic arrayed wave-guide grating and optical cross connect are used and if traffic load is light, the size of the two can be reduced by 50% with smaller cyclic arrayed wave-guide grating.
机译:具有离散信道间隔的混合线速波分复用(WDM)网络推广了固定网格WDM网络,并且可以有效地支持混合电光修饰。对于具有超过100 Gbps容器的光传输网络,需要进行光层修饰,以充分利用可变网格间距以及提高频谱利用率。在这项工作中,我们提出了两个新的节点体系结构,即具有光学整理能力的光交叉连接(OGC-OXC)和具有光学整理能力的可重配置光分插复用器(OGC-ROADM),它们能够对超出光传输网络的光层进行修饰100 Gbps,通常称为具有光梳理能力的WDM(OGC-WDM)网络。对于OGC-WDM,我们研究了每个链路上的光纤数量,以及每个节点上每个波长的增/减程度,并提出了两种新的启发式算法:First-Fit和Weighted-Fit。此外,我们分析了OGC-WDM中混合电子-光美容的预期频谱利用率,这也可以减少所需的资源。仿真研究显示以下内容:对于OGC-WDM的尺寸确定,与First-Fit相比,Weighted-Fit启发式方法减少了25%的纤维数量和60%的添加/删除度。另外,如果拓扑的大小很大并且请求的规范化距离的范围很大,那么“加权拟合”需要较小规模的添加/删除组件,并且其光纤的添加/删除度比将增加50%,数量减少50%光纤和增加/减少度乘积,后者对扩展OGC-ROADM节点至关重要。我们还发现,First-Fit的执行速度比Weighted-Fit的执行速度快十倍。另外,混合电光修饰可以减少所需的资源。使用OGC-OXC节点体系结构,如果不允许额外的光纤,则网格分配的开销将达到33%,如果允许一根额外的光纤,则网格分配的开销将达到12.6%。但是,如果允许进行电子修饰,相应的网格分配开销分别达到18.75%和7.49%。为了控制OGC-ROADM的成本,使用了环形阵列波导光栅和光学交叉连接,如果交通负荷较轻,则使用较小的环形阵列波导光栅可以将两者的尺寸减小50%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号