...
首页> 外文期刊>Optical engineering >Fundamental mechanisms of laser damage of dielectric crystals by ultrashort pulse: ionization dynamics for the Keldysh model
【24h】

Fundamental mechanisms of laser damage of dielectric crystals by ultrashort pulse: ionization dynamics for the Keldysh model

机译:超短脉冲对介电晶体造成激光损伤的基本机理:凯尔迪什模型的电离动力学

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Laser-induced ionization is a major process that initiates and drives the initial stages of laser-induced damage (LID) of high-quality transparent solids. The ionization and its contribution to LID are characterized in terms of the time-dependent ionization rate and conduction-band electron density. Considering femtosecond pulses of various durations (from 35 to 706 fs) and variable peak irradiances (from 0.01 to 60 TW/cm~2), we use a single-rate equation to simulate time variations of conduction-band electron density and rates of the photo-ionization and impact ionization. The photoionization rate is evaluated with the Keldysh equation. At low irra-diance, the electron density and total ionization rate demonstrate power scaling characteristic of multiphoton ionization. With the increase of irradiance, there is observed a saturation of the photoionization rate due to photoionization suppression by the Keldysh-type singularity during the increase in the number of simultaneously absorbed photons by 1. A striking result is that the saturation is followed by a stepwise transition from the ionization regime which is completely dominated by the photoionization to a regime totally dominated by the impact ionization. The transition results in the increase of the electron density by a few orders of magnitude induced by a variation of peak laser irradiance by about 15% to 20%. The physical effects that are involved are discussed.
机译:激光诱导的电离是一个主要过程,可引发和驱动高质量透明固体的激光诱导损伤(LID)的初始阶段。电离及其对LID的贡献通过随时间变化的电离速率和导带电子密度来表征。考虑到各种持续时间(35至706 fs)的飞秒脉冲和可变的峰值辐照度(0.01至60 TW / cm〜2),我们使用单速率方程来模拟导带电子密度的时间变化和电导率光电离和碰撞电离。用Keldysh方程评估光电离率。在低辐照度下,电子密度和总电离速率显示出多光子电离的功率缩放特性。随着辐照度的增加,在同时吸收的光子数增加1的过程中,由于Keldysh型奇异性所引起的光电离抑制,观察到了光电离速率的饱和。一个惊人的结果是,饱和度之后逐步增加从完全由光电离控制的电离状态过渡到完全由碰撞电离控制的状态。该转变导致由峰值激光辐照度变化约15%至20%引起的电子密度增加几个数量级。讨论了涉及的物理效应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号