...
首页> 外文期刊>Optical Communications and Networking, IEEE/OSA Journal of >Strict-sense nonblocking space- wavelength-space switching fabrics for elastic optical network nodes
【24h】

Strict-sense nonblocking space- wavelength-space switching fabrics for elastic optical network nodes

机译:弹性光网络节点的严格感知的无阻塞空间-波长-空间交换结构

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In elastic optical networks, a connection may occupy a frequency slot that spreads over m adjacent frequency slot units (FSUs). Such connection (called m-slot connection) also must be realized in optical nodes used in these networks. The paper considers two architectures of the three-stage switching fabric that can be used in such network nodes. The switching fabric applies space switching in the first and the third stages and wavelength switching in the second stage [the space-wavelength-space (S-W-S) switching fabric]. For both architectures, denoted by SWS1 and SWS2, we derived and proved the strict-sense nonblocking conditions when m-slot connections are set up. The number of center stage wavelength switches is calculated and evaluated. The switching fabrics are compared with the strict-sense nonblocking wavelength-space-wavelength (W-S-W) switching fabric. It is shown that the number of center stage switches does not depend on the number of FSUs available in input and output fibers but only on the maximum number of FSUs, which can be used by one connection and the number of input/output fibers in one input/ output space switch. When the number of FSUs in one connection is, for instance, limited to 5, only 11 center stage switches are needed for nonblocking operation in one of the architectures. Moreover, for switching fabrics with a greater number of maximum FSUs in one connection and a greater number of FSUs in one input or output fiber, the S-W-S switching fabrics can be practically realized, unlike the W-S-W switching fabric.
机译:在弹性光网络中,连接可能占据一个频率间隙,该频率间隙分布在m个相邻的频率间隙单元(FSU)上。这种连接(称为m插槽连接)也必须在这些网络中使用的光节点中实现。本文考虑了可在此类网络节点中使用的三阶段交换结构的两种体系结构。交换结构在第一阶段和第三阶段应用空间交换,在第二阶段应用波长交换[空间-波长-空间(S-W-S)交换结构]。对于由SWS1和SWS2表示的两种体系结构,我们推导并证明了建立m插槽连接时的严格意义上的非阻塞条件。计算和评估中心级波长开关的数量。将交换结构与严格意义上的无阻塞波长-空间-波长(W-S-W)交换结构进行比较。结果表明,中央级交换机的数量不取决于输入和输出光纤中可用的FSU的数量,而仅取决于一个连接可以使用的FSU的最大数量以及一个连接中输入/输出光纤的数量。输入/输出空间开关。例如,当一个连接中的FSU数量限制为5个时,在其中一种体系结构中,无阻塞操作只需要11个中央级交换机即可。此外,对于一个连接中具有最大数量的最大FSU且一个输入或输出光纤中具有更多FSU的交换结构,与W-S-W交换结构不同,实际上可以实现S-W-S交换结构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号