首页> 外文期刊>Oceanographic Literature Review >The control of unsteady forces and wake generated in circular and square cylinder at laminar periodic regime by using different rod geometries
【24h】

The control of unsteady forces and wake generated in circular and square cylinder at laminar periodic regime by using different rod geometries

机译:通过使用不同的杆几何形状,在层状周期性制度下控制在圆形和方圆柱中产生的不稳定力和唤醒

获取原文
获取原文并翻译 | 示例
           

摘要

The effects of the control rod geometry on the oscillating forces and vortex shedding of one circular cylinder, and another with square cross section were numerically investigated. The Reynolds number (Re) based on the diameter of the main cylinder (D) is fixed at 200. The solutions were obtained by applying the finite volume method to the Navier-Stokes in unsteady form. The control rods (CR) geometries are: square, circular, rectangle, and ellipse, accounting for different degrees of aerodynamic smoothness. The gap spacing between the main cylinder and CR was set to 0.2D, and their positions were varied in the angular range from θ = 0° to θ = 180° using intervals of 22.5°. For both main cylinders, the main flow features fall into three angular intervals, representing conditions of the rods immersed in the near wake of the main cylinders, located on their upper face, and frontally. In the first one, the fluctuating lift coefficient decreased up to 58% for the main circular cylinder by using a square rod. For the main square cylinder, the maximum reduction was 73%. The second range was characterized by gap flow formations which depended on the rod geometry and increased severely the lift forces. At the frontal angular position, the drag forces were reduced by rod interference. These results have many potential applications in the control of fluid structure interactions since cylinders with either circular or square cross sections are ubiquitous in the engineering field.
机译:在数值研究了控制杆几何形状对一个圆筒的振荡力和涡旋脱落的效果,并进行了方形横截面。基于主缸(D)的直径的雷诺数(RE)在200时固定。通过将有限体积法在不稳定形式中施加到Navier-Stokes来获得溶液。控制杆(CR)几何形状是:方形,圆形,矩形和椭圆形,占不同的空气动力学平滑度。主缸和Cr之间的间隙间隔设定为0.2D,并且在从θ= 0°到θ= 180°的角度下,它们的位置在角度范围内变化。使用22.5°。对于两个主缸,主流特征分为三个角度间隔,表示杆的条件浸入靠近主缸的近尾,位于其上表面上,并在正面。在第一,通过使用方形杆,波动提升系数对于主圆柱体的升高系数降低至58%。对于主方形气缸,最大减少为73%。第二范围的特征在于间隙流动形成,其依赖于杆几何形状并严重增加提升力。在正方角位置,通过杆干扰减少了阻力。这些结果在控制流体结构相互作用时具有许多潜在的应用,因为具有圆形或方形横截面的气缸在工程领域中普遍存在。

著录项

  • 来源
    《Oceanographic Literature Review》 |2021年第7期|1643-1643|共1页
  • 作者单位

    CONACyT- Tecnolgico Nacional de Mexico /Instituto Tecnologico de Nuevo Leon- Cen-tro de Investigacion e Innovacion Tecnologica.Av. de la Alianza No. 507 Parque de Investigacion e Innovacion Tecnologica Autopista al Aeropuerto Internacional Mariano Escobedo Km. 10 Apodaca Nuevo Leon CP 66629 Mexico;

    CONACyT- Tecnolgico Nacional de Mexico /Instituto Tecnologico de Nuevo Leon- Cen-tro de Investigacion e Innovacion Tecnologica.Av. de la Alianza No. 507 Parque de Investigacion e Innovacion Tecnologica Autopista al Aeropuerto Internacional Mariano Escobedo Km. 10 Apodaca Nuevo Leon CP 66629 Mexico;

    CONACyT- Tecnolgico Nacional de Mexico /Instituto Tecnologico de Nuevo Leon- Cen-tro de Investigacion e Innovacion Tecnologica.Av. de la Alianza No. 507 Parque de Investigacion e Innovacion Tecnologica Autopista al Aeropuerto Internacional Mariano Escobedo Km. 10 Apodaca Nuevo Leon CP 66629 Mexico;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号