首页> 外文期刊>Oceanographic Literature Review >Mineralogy, geochemistry, and Sr-Pb and in situ S isotopic compositions of hydrothermal precipitates from the Tangyin hydrothermal field, southern Okinawa Trough:Evaluation of the contribution of magmatic fluids and sediments to hydrothermal systems
【24h】

Mineralogy, geochemistry, and Sr-Pb and in situ S isotopic compositions of hydrothermal precipitates from the Tangyin hydrothermal field, southern Okinawa Trough:Evaluation of the contribution of magmatic fluids and sediments to hydrothermal systems

机译:来自唐宁水热场的水热沉淀物的矿物学,地球化学和SR-PB,南冲绳槽南部的水热沉淀物:评价岩浆流体和沉积物对水热系统的贡献

获取原文
获取原文并翻译 | 示例
           

摘要

The Okinawa Trough (OT), is a back-arc basin where rifting is in its initial stages, and where hydrothermal fields (HTFs) have developed above terrigenous sediments and volcaniclastics layers of variable thickness. The source of ore-forming materials within the hydrothermal systems of the OT is complex, and may include seawater, magmatic rock, magmatic fluid, and sediments. The contribution of magmatic fluids and sediments to the hydrothermal systems of the OT is still uncertain. At least 10 modern sea-floor HTFs have been reported from the OT, including the Jade, Hakurei, Iheya North Knoll, CLAM, Tangyin, Yonaguni Knoll IV, Hatoma, and Irabu. Here, we report results of mineralogi-cal, geochemical, and whole-rock Sr-Pb and in situ S isotopic analyses of hydrothermal precipitates from the Tangyin HTF in the southern OT. This field was discovered during the HOBAB3 cruise in 2014 and contains four types of hydrothermal precipitates: Fe-Zn- and Zn-Pb-rich massive sulfides, silica-rich precipitates, and native sulfur-rich samples. Sulfates inZn-Pb-, Fe-Zn-, and silica-rich samples have ~(87)Sr/~(86)Sr ratios of 0.71068-0.71750, which are higher than those of modern seawater and magmatic rocks, and indicate that the Sr is derived mainly from seawater and sediments. The Zn-Pb-, Fe-Zn-, and silica-rich samples have ~(206)Pb/~(204)Pb (18.5129-18.5307), ~(207)Pb/~(204)Pb (15.6374-15.6489), and ~(208)Pb/~(204)Pb (38.8759-38.9113) ratios that are intermediate between sediments and magmatic rocks, suggesting the Pb is a mixture of sediment- and magmatic-rock-derived Pb. The in situ S isotopic data indicate that the ore-forming fluids associated with all sample types had low δ~(34)S values, with the Fe-Zn- (mean δ~(34)S = 1.21‰ ± 1.38‰; SD, n = 12) and Zn-Pb-rich (mean δ~(34)S = 0.93‰ ± 0.32‰; n = 36) massive sulfides, and silica-rich precipitates (mean δ~(34)S = 2.85‰ + 1.14‰; n = 58) having lower δ~(34)S values than those of native sulfur-rich samples (mean δ~(34)S = 4.23‰ + 0.72‰; n = 5). The Zn-Pb- and Fe-Zn-rich massive sulfides, and silica-rich precipitates represent the medium-high temperature (>120 °C) early-middle stages of mineralization, formed under reducing conditions at low sulfur fugacity (fS_2), based on the occurrence of low-fS2 mineral assemblages (e.g. high-Fe sphalerite + isocubanite + pyrrhotite). The low δ~(34)S values of these three types of samples, and of the Hakurei and CLAM HTFs with low-fS_2 mineral assemblages and low concentrations of Cu, Bi, and Au, most likely reflect the incorporation of biological sulfur previously formed by MSR within the sediments. The native sulfur-rich samples of the Tangyin HTF formed at low temperatures (< 120 °C), and have slightly higher δ~(34)S values than the Fe-Zn-, Zn-Pb-, and silica-rich samples, may reflect the incorporation of biological sulfur formed mainly by MSR during hydrothermal flow in a seawater recharge zone. Some sulfates in the Jade and Iheya North Knoll HTFs have δ~(34)S values lower than that of modern seawater; this, in combination with high-fS_2 oxidizing hydrothermal fluids, and high concentrations of Cu and Au in sulfide samples, indicates a magmatic fluid contribution to these HTFs.
机译:冲绳槽(OT)是一个后弧盆地,其中脱渣是其初始阶段,其中水热场(HTF)已经开发出在植入沉积物上方和可变厚度的火山增粒层。 OT的水热系统内的矿石材料源复合,可包括海水,岩浆岩石,岩浆液和沉积物。岩浆液和沉积物对OT的水热系统的贡献仍然不确定。从OT报告了至少10个现代海底HTF,包括玉器,哈奶,伊恩州北卡,蛤蜊,唐寅,云原神庙Knoll IV,Hatoma和Irabu。在这里,我们报告矿物学,地球化学和全岩SR-Pb的结果,并在南部OT汤中的水热沉淀物的原位分析。在2014年霍布布3巡航期间发现了该领域,并含有四种类型的水热沉淀物:Fe-Zn和富含Zn-PB的大规模硫化物,富含二氧化硅富沉淀物和富含天然硫的样品。硫酸盐InZN-PB-,Fe-Zn和二氧化硅样品具有0.71068-0.71750的〜(87)SR /〜(86)SR比,其高于现代海水和岩石岩石,并表明了SR主要来自海水和沉积物。 Zn-Pb-,Fe-Zn和二氧化硅样品具有〜(206)Pb /〜(204)Pb(18.5129-18.5307),〜(207)Pb /〜(204)Pb(15.6374-15.6489) ,〜(208)Pb /〜(204)Pb(38.8759-38.9113)沉积物和岩浆岩石之间的中间体的比率,表明Pb是沉积物和岩浆岩石衍生的Pb的混合物。原位的同位素数据表明,与所有样品类型相关的矿石形成流体具有低δ〜(34)的值,Fe-Zn-(平均Δ〜(34)S = 1.21°±1.38‰; SD ,n = 12)和富含Zn-Pb(平均δ〜(34)S = 0.93±±0.32‰; n = 36)大量硫化物,富含二氧化硅的沉淀物(平均δ〜(34)S = 2.85°+ 1.14‰; n = 58)具有比天然硫的样品更低的δ〜(34)的值(平均δ〜(34)S = 4.23×+ 0.72‰; n = 5)。富含Zn-PB和Fe-Zn的大规模硫化物和二氧化硅富沉淀物代表矿化的中高温(> 120℃)的早期中间阶段,在低硫不足(FS_2)下在还原条件下形成,基于低FS2矿物组合的发生(例如高Fe闪锌矿+异琥珀酸+ Pyrrhotite)。这三种样品的低δ〜(34)的值,以及具有低FS_2矿物组合和低浓度的Cu,Bi,和Au的Hakurei和Clam HTF,最有可能反映先前形成的生物硫的掺入由沉积物内的MSR。在低温(<120℃)的唐纳霉素HTF的本地富含硫的样品,比Fe-Zn,Zn-Pb和富含二氧化硅样品略高Δ〜(34)的值,可以反映在海水充电区中的水热流动期间主要由MSR形成的生物硫的掺入。玉器和伊赫达北部的一些硫酸盐具有低于现代海水的δ〜(34)的值;这与高FS_2结合氧化水热流体,以及硫化物样品中的高浓度的Cu和Au,表明岩浆流体对这些HTF的贡献。

著录项

  • 来源
    《Oceanographic Literature Review》 |2020年第10期|2176-2176|共1页
  • 作者

    H. Wang; F. Chu; X. Li;

  • 作者单位

    Key Laboratory of Submarine Geosciences Ministry of Natural Resources & Second Institute of Oceanography Ministry of Natural Resources Hangzhou 310012 China;

    Key Laboratory of Submarine Geosciences Ministry of Natural Resources & Second Institute of Oceanography Ministry of Natural Resources Hangzhou 310012 China;

    Key Laboratory of Submarine Geosciences Ministry of Natural Resources & Second Institute of Oceanography Ministry of Natural Resources Hangzhou 310012 China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号