...
首页> 外文期刊>Ocean Engineering >Investigation of dynamic characteristics of a monopile wind turbine based on sea test
【24h】

Investigation of dynamic characteristics of a monopile wind turbine based on sea test

机译:基于海试的单桩风力发电机动态特性研究

获取原文
获取原文并翻译 | 示例

摘要

Wind energy plays an important role in the field of renewable energy due to its lower cost and the maturity of its manufacturing technology. During the last few years, there has been an increase in offshore wind turbine (OWT) projects especially in China. Considering the fact that ocean environment where these offshore wind turbines operate usually has a negative impact on their structural health, the demand for investigating the dynamic characteristics of offshore wind turbines based on sea test is increasing. However, current studies are mainly focused on method development, theoretical analysis and numerical simulation, and few attention has been given to the study of the dynamic characteristics of an actual OWT in different operational states based on sea test. To improve the current studies, in September 2016, November 2016 and April 2017 a series of monitoring campaigns of an actual in service OWT and its monopile were conducted at an offshore wind farm in the sea area near Jiangsu Province, China. For the purpose of acquiring high-quality vibration signal, one type of artificial excitation was adopted to excite the OWT vibration. In these monitoring campaigns, with the help of a group of wireless health monitoring sensor nodes developed by Ocean University of China (OUC), we successfully acquired the vibration signal of the wind turbine in parked state and normal operational state and acquired the vibration signal of the monopile in construction, which means no tower was installed. Afterwards, two modal analysis methods, the eigensystem realization algorithm (ERA) and stochastic subspace identification (SSI), were used to obtain the modal parameters of the tested structure using the vibration signal under artificial excitation and random wave excitation, respectively. The results show that the ERA method can successfully identify the first two order modal parameters of the monopile and the first three order modal parameters of the wind turbine in parked or operational state. However, the SSI method failed to identify the third-order modal parameters of the wind turbine, regardless of whether it is in parked state or operational state (only the first two order modal parameters can be identified); meanwhile, SSI failed to identify the modal parameters of the monopile. Concerning the high-level environmental noise in an offshore site, we applied weak-mode identification (WMI) for the first time to obtain the modal parameters of OWT using vibration signal under both artificial excitation and random wave excitation. The results indicated that WMI has achieved the same good performance as the ERA when the vibration signal under artificial excitation is used. When the vibration signal under random wave is used, WMI successfully identified the first order modal parameters of the monopile and the first three order modal parameters of the wind turbine in parked or operational state, which indicated a better ability than that of the SSI method. We can conclude that the modal parameters of the wind turbine can be obtained by the WMI method and ERA method, and the ERA method is the best way to obtain the modal parameters of monopile under artificial excitation. These monitoring campaign of an actual OWT not only provide modal information support for structural maintenance and operation safety assessment, but also provide a real data reference for wind turbine design.
机译:风能由于其较低的成本和其制造技术的成熟,在可再生能源领域起着重要的作用。在过去的几年中,海上风力涡轮机(OWT)项目有所增加,尤其是在中国。考虑到这些海上风力涡轮机运行所在的海洋环境通常会对它们的结构健康产生负面影响,因此基于海试研究海上风力涡轮机动态特性的需求正在增加。然而,目前的研究主要集中在方法开发,理论分析和数值模拟上,并且很少基于海上试验对实际OWT在不同运行状态下的动态特性进行研究。为了改进当前的研究,2016年9月,2016年11月和2017年4月,在中国江苏省附近海域的海上风电场进行了一系列实际运行的OWT及其单桩的监测活动。为了获取高质量的振动信号,采用一种人工激励来激发OWT振动。在这些监测活动中,借助中国海洋大学(OUC)开发的一组无线健康监测传感器节点,我们成功获取了处于停泊状态和正常运行状态的风力发电机的振动信号,并获得了风力发电机的振动信号。建造中的单体桩,这意味着没有安装塔。之后,分别采用本征系统实现算法(ERA)和随机子空间识别(SSI)两种模态分析方法,分别利用人工激励和随机波激励下的振动信号获得被测结构的模态参数。结果表明,ERA方法可以成功地识别单桩的前两个阶模态参数和停泊或运行状态下的风力涡轮机的前三个阶模态参数。但是,SSI方法无法识别风力涡轮机的三阶模态参数,而无论其处于停放状态还是运行状态(只能识别前两个阶数模态参数)。同时,SSI无法识别单桩的模态参数。关于海洋环境中的高水平环境噪声,我们首次在人工激励和随机波激励下应用弱模式识别(WMI)来利用振动信号获得OWT的模态参数。结果表明,当使用人工激励下的振动信号时,WMI具有与ERA相同的良好性能。当使用随机波下的振动信号时,WMI成功地识别了单桩的一阶模态参数和处于停放或运行状态的风力涡轮机的前三阶模态参数,这表明它比SSI方法具有更好的能力。可以得出结论,可以通过WMI方法和ERA方法获得风机的模态参数,而ERA方法是在人工激励下获得单桩模态参数的最佳方法。实际OWT的这些监视活动不仅为结构维护和运行安全评估提供了模态信息支持,而且还为风机设计提供了真实的数据参考。

著录项

  • 来源
    《Ocean Engineering 》 |2019年第1期| 106308.1-106308.17| 共17页
  • 作者单位

    Ocean Univ China Coll Engn 238 Songling Rd Qingdao 266100 Shandong Peoples R China|Harbin Engn Univ Sci & Technol Underwater Vehicle Lab Harbin 150001 Heilongjiang Peoples R China;

    Ocean Univ China Coll Engn 238 Songling Rd Qingdao 266100 Shandong Peoples R China;

    Ocean Univ China Coll Engn 238 Songling Rd Qingdao 266100 Shandong Peoples R China|Qingdao Univ Technol Cooperat Innovat Ctr Engn Construct & Safety Shan Qingdao Shandong Peoples R China;

    PowerChina Huadong Engn Corp Ltd Hangzhou 311122 Zhejiang Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Offshore wind turbines; Structural health monitoring; Mode identification; Vibration signal; Sea test;

    机译:海上风力发电机;结构健康监测;模式识别;振动信号;海试;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号