...
首页> 外文期刊>Ocean Dynamics >Evolution of wave and tide over vegetation region in nearshore waters
【24h】

Evolution of wave and tide over vegetation region in nearshore waters

机译:近岸水域植被区浪潮的演变

获取原文
获取原文并翻译 | 示例
           

摘要

Coastal wetlands are an important ecosystem in nearshore regions, where complex flow characteristics occur because of the interactions among tides, waves, and plants, especially in the discontinuous flow of the intertidal zone. In order to simulate the wave and wave-induced current in coastal waters, in this study, an explicit depth-averaged hydrodynamic (HD) model has been dynamically coupled with a wave spectral model (CMS-Wave) by sharing the tide and wave data. The hydrodynamic model is based on the finite volume method; the intercell flux is computed using the Harten-Lax-van Leer (HLL) approximate Riemann solver for computing the dry-to-wet interface; the drag force of vegetation is modeled as the sink terms in the momentum equations. An empirical wave energy dissipation term with plant effect has been derived from the wave action balance equation to account for the resistance induced by aquatic vegetation in the CMS-Wave model. The results of the coupling model have been verified using the measured data for the case with wave-tide-vegetation interactions. The results show that the wave height decreases significantly along the wave propagation direction in the presence of vegetation. In the rip channel system, the oblique waves drive a meandering longshore current; it moves from left to right past the cusps with oscillations. In the vegetated region, the wave height is greatly attenuated due to the presence of vegetation, and the radiation stresses are noticeably changed as compared to the region without vegetation. Further, vegetation can affect the spatial distribution of mean velocity in a rip channel system. In the co-exiting environment of tides, waves, and vegetation, the locations of wave breaking and wave-induced radiation stress also vary with the water level of flooding or ebb tide in wetland water, which can also affect the development and evolution of wave-induced current.
机译:沿海湿地是近岸地区的重要生态系统,由于潮汐,海浪和植物之间的相互作用,特别是在潮间带的不连续流动中,这些地区出现了复杂的流动特征。为了模拟沿海水域中的波浪和波浪感应电流,在本研究中,通过共享潮汐和波浪数据,将显式深度平均流体动力学(HD)模型与波浪光谱模型(CMS-Wave)动态耦合。 。流体力学模型基于有限体积法。使用Harten-Lax-van Leer(HLL)近似Riemann求解器计算单元间通量,以计算干-湿界面;在动量方程中,将植被的阻力建模为下沉项。从波浪作用平衡方程导出了具有植物效应的经验波浪能耗散项,以说明CMS-Wave模型中水生植被引起的阻力。耦合模型的结果已经使用潮汐-植被相互作用情况下的实测数据进行了验证。结果表明,存在植被的情况下,波高沿波传播方向明显减小。在裂隙河道系统中,斜波驱动蜿蜒的近岸海流。它从左到右移动经过尖点并发生振荡。在植被区,由于植被的存在,波高大大衰减了,与没有植被的地区相比,辐射应力发生了明显变化。此外,植被会影响裂隙通道系统中平均速度的空间分布。在潮汐,波浪和植被共存的环境中,波浪破裂和波浪引起的辐射应力的位置也会随着湿地水中洪水或退潮的水位而变化,这也会影响波浪的发展和演变感应电流。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号