首页> 外文期刊>Ocean Dynamics >Simulation of breaking waves using the high-order spectral method with laboratory experiments: wave-breaking energy dissipation
【24h】

Simulation of breaking waves using the high-order spectral method with laboratory experiments: wave-breaking energy dissipation

机译:使用高阶谱法通过实验室实验模拟碎波:碎波能量耗散

获取原文
获取原文并翻译 | 示例
           

摘要

We examine the implementation of a wave-breaking mechanism into a nonlinear potential flow solver. The success of the mechanism will be studied by implementing it into the numerical model HOS-NWT, which is a computationally efficient, open source code that solves for the free surface in a numerical wave tank using the high-order spectral (HOS) method. Once the breaking mechanism is validated, it can be implemented into other nonlinear potential flow models. To solve for wave-breaking, first a wave-breaking onset parameter is identified, and then a method for computing wave-breaking associated energy loss is determined. Wave-breaking onset is calculated using a breaking criteria introduced by Barthelemy et al. (J Fluid Mech https://arxiv.org/pdf/1508.06002.pdf, submitted) and validated with the experiments of Saket et al. (J Fluid Mech 811:642-658, 2017). Wave-breaking energy dissipation is calculated by adding a viscous diffusion term computed using an eddy viscosity parameter introduced by Tian et al. (Phys Fluids 20(6): 066,604, 2008, Phys Fluids 24(3), 2012), which is estimated based on the pre-breaking wave geometry. A set of two-dimensional experiments is conducted to validate the implemented wave breaking mechanism at a large scale. Breaking waves are generated by using traditional methods of evolution of focused waves and modulational instability, as well as irregular breaking waves with a range of primary frequencies, providing a wide range of breaking conditions to validate the solver. Furthermore, adjustments are made to the method of application and coefficient of the viscous diffusion term with negligible difference, supporting the robustness of the eddy viscosity parameter. The model is able to accurately predict surface elevation and corresponding frequency/amplitude spectrum, as well as energy dissipation when compared with the experimental measurements. This suggests the model is capable of calculating wave-breaking onset and energy dissipation successfully for a wide range of breaking conditions. The model is also able to successfully calculate the transfer of energy between frequencies due to wave focusing and wave breaking. This study is limited to unidirectional waves but provides a valuable basis for future application of the wave-breaking model to a multidirectional wave field. By including parameters for removing energy due to wave-breaking into a nonlinear potential flow solver, the risk of developing numerical instabilities due to an overturning wave is decreased, thereby increasing the application range of the model, including calculating more extreme sea states. A computationally efficient and accurate model for the generation of a nonlinear random wave field is useful for predicting the dynamic response of offshore vessels and marine renewable energy devices, predicting loads on marine structures, and in the study of open ocean wave generation and propagation in a realistic environment.
机译:我们研究了将破波机制实施到非线性势流求解器中的方法。通过将其实现到数值模型HOS-NWT中,可以研究该机制的成功之处,该模型是一种计算有效的开源代码,可以使用高阶谱(HOS)方法求解数值波箱中的自由表面。一旦验证了破坏机制,就可以将其实施到其他非线性势流模型中。为了解决波浪破碎,首先确定波浪破碎起始参数,然后确定一种计算波浪破碎相关能量损失的方法。使用Barthelemy等人介绍的破裂标准来计算波浪起裂。 (J Fluid Mech https://arxiv.org/pdf/1508.06002.pdf,已提交),并通过Saket等人的实验进行了验证。 (J流体力学811:642-658,2017)。通过添加粘性扩散项来计算波浪破碎的能量耗散,该粘性扩散项使用Tian等人介绍的涡流粘度参数计算得出。 (Phys Fluids 20(6):066,604,2008,Phys Fluids 24(3),2012),这是根据破波前的几何形状估算的。进行了一组二维实验,以大规模验证所实现的破波机制。断裂波是通过使用聚焦波演化和调制不稳定性的传统方法以及具有一定范围主频率的不规则断裂波产生的,从而提供了广泛的断裂条件来验证求解器。此外,对应用方法和粘性扩散项的系数进行了调整,差异可忽略不计,从而支持了涡流粘度参数的鲁棒性。与实验测量值相比,该模型能够准确预测表面高度和相应的频率/幅度频谱以及能量耗散。这表明该模型能够在各种破裂条件下成功地计算出波浪起伏和能量耗散。该模型还能够成功计算由于波聚焦和波破裂而导致的频率之间的能量转移。这项研究仅限于单向波,但为将来将破波模型应用于多向波场提供了有价值的基础。通过将用于去除因波浪破裂而产生的能量的参数包括到非线性势流求解器中,可以降低由于倾覆波浪而产生数值不稳定性的风险,从而增加了模型的应用范围,包括计算更多的极端海况。用于生成非线性随机波场的计算有效且准确的模型可用于预测近海船舶和海洋可再生能源设备的动力响应,预测海洋结构的负荷以及研究海洋中开放海浪的产生和传播。现实的环境。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号