首页> 外文期刊>Numerical Heat Transfer, Part A: Applications >High-Frequency Pulsatile Pipe Flows Encompassing All Flow Regimes
【24h】

High-Frequency Pulsatile Pipe Flows Encompassing All Flow Regimes

机译:涵盖所有流量形式的高频脉动管流量

获取原文
获取原文并翻译 | 示例
           

摘要

Time-varying pipe flows driven by a harmonically pulsating inlet velocity and spanning all flow regimes have been investigated by means of numerical simulations. The Reynolds number varied from 1000 to 5000 in response to the inlet velocity oscillations. The frequency of the pulsations was varied from 1 to 10Â Hz. These frequencies are markedly higher than those previously studied (maximum value of 0.025Â Hz). The motivation for the use of the elevated frequency range was engendered by practical applications such as cardiovascular and respiratory systems of mammals in addition to numerous industrial applications. The simulations made use of the modified Menter transitional model. The key conclusion found here is that the use of a quasi-steady model for the prediction of fully developed friction factors is not applicable for the higher frequencies considered here. The deviations between the actual and quasi-steady friction factor values increase markedly with increasing frequency. Backflow occurs near the wall as the flow transists from deceleration to acceleration. This transition gives rise to a change in the sign of the axial pressure gradient. The amplitudes of the pressure oscillations generated by the imposed velocity variations increase markedly with increasing frequency and diminish with increasing downstream distance from the pipe inlet. The effect of modifications of the Menter model was assessed by carrying out separate numerical solutions for the unmodified and modified models. The pressure oscillations corresponding to the respective models were compared, and it was found that the deviations are insignificant.View full textDownload full textRelated var addthis_config = { ui_cobrand: "Taylor & Francis Online", services_compact: "citeulike,netvibes,twitter,technorati,delicious,linkedin,facebook,stumbleupon,digg,google,more", pubid: "ra-4dff56cd6bb1830b" }; Add to shortlist Link Permalink http://dx.doi.org/10.1080/10407782.2011.627794
机译:通过数值模拟研究了由谐波脉动进口速度驱动并跨越所有流态的时变​​管道流。响应于入口速度振荡,雷诺数从1000到5000变化。脉动的频率从1到10 Hz不等。这些频率明显高于以前研究的频率(最大值为0.025 Hz)。除了许多工业应用之外,诸如哺乳动物的心血管和呼吸系统的实际应用也引起了使用升高的频率范围的动机。仿真使用了改进的Menter过渡模型。此处得出的主要结论是,将准稳态模型用于充分发展的摩擦系数的预测不适用于此处考虑的较高频率。实际和准稳态摩擦系数值之间的偏差会随着频率的增加而显着增加。随着流量从减速过渡到加速,壁附近会发生回流。该过渡引起轴向压力梯度的符号的变化。由施加的速度变化产生的压力振荡的幅度随着频率的增加而显着增加,并且随着距管道入口的下游距离的增加而减小。通过对未修改的模型和修改的模型分别进行数值求解,评估了Menter模型的修改效果。比较了与各个模型相对应的压力振荡,发现偏差不明显。 Delicious,linkedin,facebook,stumbleupon,digg,google,更多”,发布号:“ ra-4dff56cd6bb1830b”};添加到候选列表链接永久链接http://dx.doi.org/10.1080/10407782.2011.627794

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号