首页> 外文期刊>Nuclear Technology >Transport Phenomena in Supercritical Fluids in Gen-IV Reactor Designs
【24h】

Transport Phenomena in Supercritical Fluids in Gen-IV Reactor Designs

机译:第四代反应堆设计中超临界流体中的传输现象

获取原文
获取原文并翻译 | 示例
       

摘要

There has been an ongoing search for more efficient power plant designs over the last few decades. For fossil-fueled power plants, this has resulted in the development of supercritical water Rankine steam cycles in the 1960s and most recently ultra-supercritical water power cycle systems. In addition, the use of supercritical fluids has been proposed for power cycles as part of the Generation TV (Gen-TV) advanced nuclear reactor designs, since these systems can also provide for higher thermal efficiency and reduced overall costs. For either of these power plant designs, both supercritical water and supercritical carbon dioxide have been considered as working fluids for either Rankine or Brayton cycle designs for a wide range of Gen-TV reactor designs, e.g., supercritical water reactor, high-temperature gas-cooled reactor, and liquid-metal-cooled reactor. In all of these designs, it has be-rncome quite apparent that research and development (R&D) investment in innovations in supercritical fluid thermal hydraulics and related materials issues is required to advance the state of the art in more efficient, cheaper, and safer nuclear power system technologies. One can view supercritical fluid transport phenomena as a base technology R&D need that requires more fundamental understanding in a number of areas. The Wisconsin Institute of Nuclear Systems at the University ofWisconsin-Madison has been investigating a range of key phenomena in supercritical fluids involving flow stability, critical flow phenomena, heat transfer enhancement and degradation, as well as materials corrosion issues. This paper summarizes our efforts in thermal hydraulics in order to provide a context for base technology R&D in supercritical fluids to advance Gen-TV systems.
机译:在过去的几十年中,一直在寻找更有效的电厂设计。对于化石燃料发电厂,这导致了1960年代超临界水兰金蒸汽循环以及最近的超超临界水动力循环系统的发展。另外,由于发电系统(Gen-TV)先进的核反应堆设计的一部分,已经提出将超临界流体用于功率循环,因为这些系统还可以提供更高的热效率并降低总体成本。对于这两种发电厂设计中的任何一种,超临界水和超临界二氧化碳都被视为适用于各种Gen-TV反应堆设计的兰金循环或布雷顿循环设计的工作流体,例如超临界水反应堆,高温燃气冷却反应堆和液态金属冷却反应堆。在所有这些设计中,已经非常明显地需要研发(R&D)对超临界流体热工水力及相关材料问题进行创新的投资,以推动更高效,更便宜和更安全的核技术的发展。电力系统技术。人们可以将超临界流体传输现象视为一项基本技术研发需求,需要在许多领域进行更基本的了解。威斯康星大学麦迪逊分校的威斯康星州核系统研究所一直在研究超临界流体中的一系列关键现象,包括流动稳定性,临界流动现象,传热增强和降解以及材料腐蚀问题。本文总结了我们在热工液压方面所做的努力,以便为超临界流体的基础技术研发提供一个背景,以推动Gen-TV系统的发展。

著录项

  • 来源
    《Nuclear Technology》 |2009年第1期|145-156|共12页
  • 作者

    Michael L.Corradini;

  • 作者单位

    University of Wisconsin-Madison College of Engineering, Nuclear Engineering and Engineering Physics 1500 Engineering Drive, Madison, Wisconsin 53706;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    supercritical fluids; heat transfer; stability; critical flow;

    机译:超临界流体传播热量;稳定性;临界流量;
  • 入库时间 2022-08-18 00:44:14

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号