首页> 外文期刊>Nuclear Technology >EXTENDING SODIUM FAST REACTOR DRIVER FUEL USE TO HIGHER TEMPERATURES
【24h】

EXTENDING SODIUM FAST REACTOR DRIVER FUEL USE TO HIGHER TEMPERATURES

机译:将钠快速反应堆驱动器燃料扩展到更高的温度

获取原文
获取原文并翻译 | 示例
       

摘要

Calculations of potential sodium-cooled fast reactor fuel temperatures were performed to estimate the effects of increasing the outlet temperature of a given fast reactor design by increasing pin power, decreasing assembly flow, or increasing inlet temperature. Based upon experience in the United States, both metal and mixed oxide (MOX)fuel types are discussed in terms of potential performance effects created by the increased operating temperatures. Assembly outlet temperatures of 600, 650, and 700℃ were used as goal temperatures. Fuel-cladding chemical interaction (FCCI) and fuel melting, as well as challenges to the mechanical integrity of the cladding material, were identified as the limiting phenomena. For example, starting with a recent 1000 MW'(thermal) fast reactor design, rais- ing the outlet temperature to 650℃ through pin power increase raised the MOX centerline temperature to more than 3300℃ and the metal fuel peak cladding temperature to more than 700℃. These exceeded limitations to fuel performance; fuel melting was limiting for MOX and FCCI for metal fuel. Both could be alleviated by design "fixes," such as using a barrier inside the cladding to minimize FCCI in the metal fuel, or using annular fuel in the case of MOX. Both would also require an advanced cladding material with improved stress rupture properties. Although some of these are costly, the benefits of having a high-temperature reactor that can support hydrogen production, or other missions requiring high process heat, may justify the extra costs.
机译:进行了钠冷却快堆潜在燃料温度的计算,以估计通过增加销功率,减少装配流量或增加入口温度来提高给定快堆设计出口温度的影响。根据美国的经验,讨论了金属和混合氧化物(MOX)燃料类型,它们是由工作温度升高产生的潜在性能影响而来的。组件出口温度为600、650和700℃作为目标温度。燃料-包层的化学相互作用(FCCI)和燃料熔化以及对包层材料的机械完整性的挑战被认为是限制现象。例如,从最近的1000 MW'(热)快堆设计开始,通过销功率的增加将出口温度提高到650℃,将MOX中心线温度提高到3300℃以上,金属燃料的峰值包层温度提高到12℃以上。 700℃。这些超出了燃油性能的限制;燃料熔化限制了金属燃料的MOX和FCCI。两者都可以通过设计“修复”来缓解,例如在包层内部使用屏障以使金属燃料中的FCCI最小化,或者在MOX情况下使用环形燃料。两者都将需要具有改善的应力断裂性能的高级覆层材料。尽管其中一些成本很高,但拥有可以支持制氢的高温反应器或其他需要高工艺热量的任务的好处可能会证明额外的成本是合理的。

著录项

  • 来源
    《Nuclear Technology》 |2011年第2期|p.218-225|共8页
  • 作者单位

    Idaho National Laboratory, P.O. Box 1625, Idaho Falls, Idaho 83415-6188;

    Idaho National Laboratory, P.O. Box 1625, Idaho Falls, Idaho 83415-6188;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    fast reactor fuel; high-temperature fast reactor;

    机译:快堆燃料;高温快堆;
  • 入库时间 2022-08-18 00:43:43

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号