首页> 外文期刊>Nuclear Technology >WATER CHEMISTRY IN A SUPERCRITICAL WATER-COOLED PRESSURE TUBE REACTOR
【24h】

WATER CHEMISTRY IN A SUPERCRITICAL WATER-COOLED PRESSURE TUBE REACTOR

机译:超临界水冷式压力管反应器中的水化学

获取原文
获取原文并翻译 | 示例
       

摘要

The long-term viability of a supercritical water-cooled reactor (SCWR) will depend on the ability of designers and operators to control and maintain water chemistry conditions that will minimize corrosion and the transport of both corrosion products and radio-nuclides, at a pressure of 25 MPa and temperatures from 300°C to 625°C. To achieve this goal, the behavior of low concentrations of impurities such as transition metal corrosion products, chemistry control agents, impurities in the feedwater, and radionuclides (fission and activation products) in subcritical and supercritical water must be understood. A second key aspect of SCWR water chemistry control will be mitigation of the effects of water radiolysis. Preliminary studies suggest markedly different behavior than that predicted by extrapolating conventional water-cooled reactor behavior. The principal challenge in predicting corrosion and fission product transport is the lack of thermochemical and kinetic data above 300°C. Calculations with extrapolated data show that the formation of neutral complexes increases with temperature and can become important under near-critical and supercritical conditions. The most important region is from 300°C to 450°C, where the properties of water change dramatically and solvent compressibility effects exert a huge influence on solvation. The potential for increased transport and deposition of corrosion products (radioactive and inactive), leading to increased deposition on fuel cladding surfaces and increased out-of-core radiation fields and worker dose, must be assessed. The commonly used strategy of adding excess hydrogen at concentrations sufficient to suppress the net radiolytic production of primary oxidizing species may not be effective in an SCWR. Because direct measurement of the chemistry under such extreme conditions of temperature, pressure, and radiation fields is difficult, the most promising approach involves a combination of theoretical calculations, chemical models, and experimental work.
机译:超临界水冷反应堆(SCWR)的长期生存能力将取决于设计者和操作员控制和维持水化学条件的能力,该条件将在一定压力下最大程度地减少腐蚀以及腐蚀产物和放射性核素的运输25 MPa的温度和300°C至625°C的温度。为实现此目标,必须了解低浓度杂质(例如过渡金属腐蚀产物,化学控制剂,给水中的杂质以及亚临界和超临界水中的放射性核素(裂变和活化产物)的行为)。 SCWR水化学控制的第二个关键方面是减轻水辐射分解的影响。初步研究表明,其行为与通过推断常规水冷反应堆行为所预测的行为明显不同。预测腐蚀和裂变产物传输的主要挑战是缺乏高于300°C的热化学和动力学数据。用外推数据进行的计算表明,中性配合物的形成随温度增加而增加,并且在近临界和超临界条件下可能变得重要。最重要的区域是300°C至450°C,在该区域水的性质发生了巨大变化,溶剂的压缩效果对溶剂化产生了巨大影响。必须评估腐蚀产物(放射性和非活性物质)的运输和沉积增加,导致燃料包壳表面沉积增加以及堆外辐射场和工人剂量增加的可能性。在SCWR中,通常常用的添加过量氢的浓度足以抑制初级氧化物质净辐射产生的策略可能无效。由于很难在如此极端的温度,压力和辐射场条件下直接测量化学物质,因此最有前途的方法涉及理论计算,化学模型和实验工作的结合。

著录项

  • 来源
    《Nuclear Technology》 |2012年第2期|p.205-219|共15页
  • 作者单位

    Atomic Energy of Canada Limited, Reactor Chemistry and Corrosion Branch Chalk River Laboratories, Chalk River, Ontario KOJ 1J0, Canada CANDU, CANada Deuterium Uranium, is a registered trade-mark of Atomic Energy of Canada Limited (AECL);

    University of Guelph, Department of Chemistry, Guelph, Ontario NIG 2W1, Canada;

    University of Guelph, Department of Chemistry, Guelph, Ontario NIG 2W1, Canada;

    Universite de Sherbrooke, Department of Nuclear Medicine and Radiobiology Sherbrooke, Quebec J1H 5N4, Canada;

    Universite de Sherbrooke, Department of Nuclear Medicine and Radiobiology Sherbrooke, Quebec J1H 5N4, Canada;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    supercritical water; reactor chemistry; corrosion; radiolysis;

    机译:超临界水反应器化学腐蚀;放射分解;
  • 入库时间 2022-08-18 00:43:41

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号