首页> 外文期刊>Nuclear Technology >FUEL CYCLE SYSTEM ANALYSIS IMPLICATIONS OF SODIUM-COOLED METAL-FUELED FAST REACTOR TRANSURANIC CONVERSION RATIO
【24h】

FUEL CYCLE SYSTEM ANALYSIS IMPLICATIONS OF SODIUM-COOLED METAL-FUELED FAST REACTOR TRANSURANIC CONVERSION RATIO

机译:钠冷金属燃料快速反应器转化率的燃料循环系统分析

获取原文
获取原文并翻译 | 示例
           

摘要

If advanced fuel cycles are to include a large number of fast reactors (FRs), what should be the transuranic (TRU) conversion ratio (CR)? The nuclear energy era started with the assumption that they should be breeder reactors (CR > 1), but the full range of possible CRs eventually received attention. For example, during the recent U.S. Global Nuclear Energy Partnership program, the proposal was burner reactors (CR < 1). Yet, more recently, Massachusetts Institute of Technology's "Future of the Nuclear Fuel Cycle" proposed CR ~ 1. Meanwhile, the French company EDF remains focused on breeders. At least one of the reasons for the differences of approach is different fuel cycle objectives. To clarify matters, this paper analyzes the impact of TRU CR on many parameters relevant to fuel cycle systems and therefore spans a broad range of topic areas. The analyses are based on a FR physics parameter scan of TRU CR from 0 to ~1.8 in a sodium-cooled metal-fueled FR (SMFR), in which the fuel from uranium-oxide-fueled light water reactors (LWRs) is recycled directly to FRs and FRs displace LWRs in the fleet. In this instance, the FRs are sodium cooled and metal fueled. Generally, it is assumed that all TRU elements are recycled, which maximizes uranium ore utilization for a given TRU CR and waste radiotoxicity reduction and is consistent with the assumption of used metal fuel separated by electrochemical means. In these analyses, the fuel burnup was constrained by imposing a neutron flu-ence limit to fuel cladding to the same constant value. This paper first presents static, time-independent measures of performance for the LWR → FRfuel cycle, including mass, heat, gamma emission, radiotoxicity, and the two figures of merit for materials for weapon attractiveness developed by C. Bathke et al. No new fuel cycle will achieve a static equilibrium in the foreseeable future. Therefore, additional analyses are shown with dynamic, time-dependent measures of performance including uranium usage, TRU inventory, and radiotoxicity to evaluate the complex impacts of transition from the current uranium-fueled LWR system, and other more realistic impacts that may not be intuited from the time-independent steady-state conditions of the end-state fuel cycle. These analyses were performed using the Verifiable Fuel Cycle Simulation Model VISION. Compared with static calculations, dynamic results paint a different picture of option space and the urgency of starting a FR fleet. For example, in a static analysis, there is a sharp increase in uranium utilization as CR exceeds 1.0 (burner versus breeder). However, in dynamic analyses that examine uranium use over the next 1 to 2 centuries, behavior as CR crosses the 1.0 threshold is smooth, and other parameters such as the time required outside of reactors to recycle fuel become important. Overall, we find that there is no unambiguously superior value of TRU CR; preferences depend on the relative importance of different fuel cycle system objectives.
机译:如果先进的燃料循环要包括大量的快速反应堆(FR),那么超铀(TRU)转化率(CR)应该是多少?核能时代始于它们应该是增殖反应堆(CR> 1)的假设,但是最终所有可能的CR都受到关注。例如,在最近的美国全球核能伙伴计划中,该提案是燃烧器反应堆(CR <1)。然而,最近,麻省理工学院的“核燃料循环的未来”提出了CR〜1。与此同时,法国的EDF公司仍然专注于育种者。方法不同的至少一个原因是燃料循环目标不同。为了澄清问题,本文分析了TRU CR对与燃料循环系统相关的许多参数的影响,因此涵盖了广泛的主题领域。该分析基于在钠冷却金属燃料FR(SMFR)中TRU CR从0到〜1.8的FR物理参数扫描,其中铀氧化物燃料轻水反应堆(LWR)的燃料直接再循环FR和FR替换车队中的轻水堆。在这种情况下,FRs是钠冷却的,并且是金属燃料。通常,假定所有的TRU元素都是可循环利用的,这对于给定的TRU CR可使铀矿石的利用率最大化,并减少废物的放射毒性,并且与通过电化学手段分离废金属燃料的假设一致。在这些分析中,通过对燃料包壳施加中子通量极限以使其具有相同的恒定值,从而限制了燃料的燃耗。本文首先介绍了LWR→FR燃料循环的静态,与时间无关的性能度量,包括质量,热量,伽马发射,放射毒性以及C. Bathke等人开发的武器吸引力材料的两个优值。在可预见的将来,没有新的燃料循环会达到静态平衡。因此,通过动态,随时间变化的性能指标(包括铀用量,TRU库存和放射毒性)显示了其他分析,以评估从当前的铀燃料轻水堆系统过渡带来的复杂影响,以及其他可能无法理解的更现实的影响从最终状态燃料循环的与时间无关的稳态条件出发。这些分析是使用可验证的燃料循环仿真模型VISION进行的。与静态计算相比,动态结果描绘了期权空间和启动FR机队的紧迫性的不同图景。例如,在静态分析中,随着CR超过1.0(燃烧器与育种机),铀的利用率会急剧增加。但是,在检查接下来的1至2个世纪铀使用情况的动态分析中,CR超过1.0阈值时的行为是平稳的,并且其他参数(例如反应堆外循环燃料所需的时间)变得很重要。总体而言,我们发现TRU CR没有明确的优势。偏好取决于不同燃料循环系统目标的相对重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号