...
首页> 外文期刊>Nuclear Technology >THE USE OF FLASHING DRUMS AND MICROCHANNEL HEAT EXCHANGERS TO GENERATE STEAM IN LARGE INTEGRAL LIGHT WATER REACTORS
【24h】

THE USE OF FLASHING DRUMS AND MICROCHANNEL HEAT EXCHANGERS TO GENERATE STEAM IN LARGE INTEGRAL LIGHT WATER REACTORS

机译:大型整体式轻型水反应器中使用闪蒸桶和微通道换热器产生蒸汽

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Integral pressurized water reactors are innovative reactors in which all of the components typically associated with the nuclear steam supply system of a nuclear power station are located within the reactor pressure vessel. In order to facilitate this modification in large [~1000-MW(electric)] light water reactors (LWRs), compact heat exchangers such as microchannel heat exchangers must be used. Previous attempts at using microchannel heat exchangers were unsuccessful since they are prone to vapor locking and crud blockage when the primary coolant boils. Therefore, the authors propose the use of a flashing drum to facilitate boiling in conjunction with a primary microchannel heat exchanger for a large integral LWR. The integral inherently safe light water reactor (I~2S-LWR) is used as a basis for the implementation of this novel concept. The high-temperature, high-pressure secondary water generated in the secondary loop through heating in the microchannel primary heat exchanger of the I~2S-LWR is sent to a flashing drum where 99.9% pure vapor is extracted and sent to the turbines. This prevents boiling in the primary heat exchanger that in turn reduces crud deposition, flow instabilities, and the potential for channel blockage or vapor locking in the small channel sizes of microchannel heat exchangers. The benefits and disadvantages of this approach are presented in this paper. Unfortunately, this innovative approach to nuclear steam generation for integral LWRs is challenged by a potential decrease in thermodynamic efficiency. Therefore, a sensitivity study is presented that explores the impact of several design variables on the thermodynamic efficiency of the plant. As part of this study, a simple and a complex Rankine cycle were modeled in order to determine the impact that system design modifications can play in recovering thermodynamic efficiency lost by the steam drum. Both cycles utilize turbines, condensers, and condensatelrecir-culation pumps, while the complex Rankine cycle utilizes a four-stage turbine with subsequent separation and open feedwater heaters. The optimized efficiencies for the simple and complex Rankine cycles are 31% and 33%, respectively, indicating that additional system enhancements to the power conversion system could compensate for the inclusion of a flashing drum.
机译:整体式压水堆是创新的反应堆,其中通常与核电站的核蒸汽供应系统相关的所有组件都位于反应堆压力容器内。为了在大型[〜1000-MW(电力)]轻水反应堆(LWR)中促进这种修改,必须使用紧凑型热交换器,例如微通道热交换器。先前使用微通道换热器的尝试均未成功,因为当主冷却剂沸腾时,它们容易发生蒸气锁定和结块堵塞。因此,作者提出使用闪蒸鼓与用于大型整体式轻水堆的主微通道热交换器一起促进沸腾。整体式本安轻型水反应堆(I〜2S-LWR)被用作实施该新颖概念的基础。在I〜2S-LWR的微通道一级热交换器中,通过在二级回路中加热而产生的高温高压二级水被送到闪蒸鼓中,在那里99.9%的纯蒸气被抽出并送到涡轮机中。这可以防止主热交换器中的沸腾,从而减少粗粒沉积,流动不稳定性,以及在微通道热交换器的小通道尺寸中造成通道阻塞或蒸汽锁定的可能性。本文介绍了这种方法的优缺点。不幸的是,这种用于整体轻水堆的核蒸汽生产的创新方法受到热力学效率可能下降的挑战。因此,提出了一项敏感性研究,探讨了几个设计变量对工厂热力学效率的影响。作为这项研究的一部分,对简单和复杂的兰金循环进行了建模,以确定系统设计修改对恢复蒸汽鼓损失的热力学效率的影响。两个循环均使用涡轮机,冷凝器和冷凝水循环泵,而复杂的兰金循环则使用四级涡轮机,随后进行分离并打开给水加热器。对于简单和复杂的兰金循环,最佳效率分别为31%和33%,这表明对功率转换系统的其他系统增强可以补偿包含闪蒸鼓的问题。

著录项

  • 来源
    《Nuclear Technology》 |2015年第3期|199-212|共14页
  • 作者单位

    Brigham Young University, 350U Clyde Building, Provo, Utah 84602;

    University of Michigan, 2945 Cooley, Ann Arbor, Michigan 48109;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    I~2S-LWR; flashing drum; thermodynamic efficiency;

    机译:I〜2S-LWR;闪鼓热力学效率;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号