首页> 外文期刊>Nuclear Technology >Effects of Gas Rarefaction on Used Nuclear Fuel Cladding Temperatures During Vacuum Drying
【24h】

Effects of Gas Rarefaction on Used Nuclear Fuel Cladding Temperatures During Vacuum Drying

机译:真空干燥过程中气体回流对废旧核燃料熔覆温度的影响

获取原文
获取原文并翻译 | 示例
           

摘要

A two-dimensional computational model of a loaded used nuclear fuel canister filled with dry helium gas was constructed to predict the cladding temperature during vacuum-drying conditions. The model includes distinct regions for the fuel pellets, cladding, and helium within each basket opening, and it calculates the conduction heat transfer within all solid components, heat generation within the fuel pellets, and conduction and surface-to-surface radiation across the gas-filled regions. First, steady-state simulations are performed to determine peak clad temperatures as a function of the fuel heat generation rate, assuming the canister is filled with atmospheric pressure helium. The allowable fuel heat generation rate, which brings the peak clad temperature to its limit, is evaluated. The discrete velocity method is then used to calculate slip-regime rarefied gas conduction across planar and cylindrical helium-filled gaps. These results are used to verify the Lin-Willis solid-gas interface thermal resistance model for a range of thermal accommodation coefficients α. The Lin- Willis model is then implemented at the solid-gas interfaces within the canister model. Finally, canister simulations with helium pressures of 100 and 400 Pa and α = 1, 0.4, and 0.2 are performed to determine how much hotter the fuel cladding is under vacuum-drying conditions compared to atmospheric pressure. For α = 0.4, the fuel heat generation rates that bring the clad temperature to its allowed limit for helium pressures of 400 and 100 Pa are reduced by 10% and 25%, respectively, compared to atmospheric pressure conditions. Transient simulations show that the cladding reaches its steady-state temperatures ~20 to 30 h after water is removed from the canister.
机译:构造了一个装有干氦气的已装载废旧核燃料罐的二维计算模型,以预测真空干燥条件下的包壳温度。该模型在每个篮孔内包括燃料颗粒,包层和氦气的不同区域,并且该模型计算所有固体组分内的传导热传递,燃料颗粒内的热量产生以及气体的传导和表面对表面辐射填充区域。首先,假设碳罐中充满了大气压氦气,执行稳态模拟以确定峰值包覆温度作为燃料发热量的函数。评估允许的燃料发热量,使峰值包层温度达到极限。然后,使用离散速度方法来计算在平面和圆柱状氦气填充间隙中的滑移区稀有气体传导。这些结果用于验证一系列热调节系数α的Lin-Willis固-气界面热阻模型。然后在罐模型内的固-气界面处实现Lin-Willis模型。最后,用100和400 Pa的氦气压力以及α= 1、0.4和0.2进行碳罐模拟,以确定在真空干燥条件下燃料包壳比大气压力高多少。对于α= 0.4,与大气压条件相比,将包层温度达到400 Pa和100 Pa氦气允许温度的燃料发热量分别降低了10%和25%。瞬态模拟表明,从水罐中取出水后,熔覆层达到稳态温度约20至30小时。

著录项

  • 来源
    《Nuclear Technology》 |2016年第3期|387-399|共13页
  • 作者单位

    University of Nevada Reno, 1664 N. Virginia Street, MS 312, Reno, Nevada 89557;

    University of Nevada Reno, 1664 N. Virginia Street, MS 312, Reno, Nevada 89557;

    Aix-Marseille Universite, CNRS UMR 7343, 13453 Marseille, France;

    Aix-Marseille Universite, CNRS UMR 7343, 13453 Marseille, France;

    University of Nevada Reno, 1664 N. Virginia Street, MS 312, Reno, Nevada 89557;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Used nuclear fuel; cladding temperatures; vacuum drying;

    机译:二手核燃料;包层温度;真空干燥;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号