首页> 外文期刊>Nuclear Technology >Development of the APSRA+ Methodology for Passive System Reliability Analysis and Its Application to the Passive Isolation Condenser System of an Advanced Reactor
【24h】

Development of the APSRA+ Methodology for Passive System Reliability Analysis and Its Application to the Passive Isolation Condenser System of an Advanced Reactor

机译:无源系统可靠性分析APSRA +方法的发展及其在先进反应堆无源冷凝器系统中的应用

获取原文
获取原文并翻译 | 示例
       

摘要

Research in the field of passive system reliability analysis is garnering sharp interest in the nuclear community. Passive systems are being utilized extensively in current- and future-generation reactors for their normal operations as well as for safety critical operations during any accidental conditions. In this paper, we present a methodology called Analysis of Passive System ReliAbility Plus (APSRA~+)for evaluating reliability of passive systems. This methodology is an improved version of the existing APSRA methodology. The methodology has been applied to the passive isolation condenser system (ICS) of the AHWR (Advanced Heavy Water Reactor). With the help of the APSRA~+ methodology, the probability of the passive ICS failing to maintain the clad temperature under 400℃ is estimated to be of the order 1 × 10~(-10). Important features of APSRA~+ are the following. First, it provides an integrated dynamic reliability method for the consistent treatment of dynamic failure characteristics such as multistate failure, fault increment, and time-dependent failure rate of components of passive systems. Second, this methodology overcomes the issue of process parameter treatment by just the probability density function or by root cause analysis, by segregating the parameters into dependent and independent process parameters and then giving a proper treatment to each of them separately. Third, the methodology treats the model uncertainties and independent process parameter variations in a consistent manner. In APSRA~+, the important parameters affecting the passive system under consideration are identified using sensitivity analysis. To evaluate the system performance, a best-estimate system code is used with due consideration of the uncertainties in empirical models. A failure surface is generated by varying all the identified important parameters; variation from the nominal values of these parameters affects the system performance significantly. These parameters are then segregated into dependent and independent categories. For dependent parameters, it is attributed that the variations of process parameters are mainly due to malfunction of mechanical components or control systems, and hence, root cause analysis is performed. The probability of these dependent parameter variations is estimated using a dynamic reliability methodology based on Monte Carlo simulation. The dynamic failure characteristics of the identified causal component/system are accounted for in calculating these probabilities. For the treatment of independent process parameters, using APSRA~+ suggests adopting and integrating classical data-fitting techniques or mathematical models. In the next steps, a response surface-based metamodel is formulated using the generated failure points. The probability of the system being in the failure zone is estimated by sampling and analyzing a sufficiently large number of samples for all the dependent and independent process parameters based on the probability of variations of these parameters, which were estimated using dynamic reliability methodology.
机译:无源系统可靠性分析领域的研究引起了核领域的极大关注。在当前和未来的反应堆中,无源系统被广泛用于其正常运行以及在任何意外情况下的安全关键运行。在本文中,我们提出了一种称为无源系统可靠性分析(APSRA〜+)的方法,用于评估无源系统的可靠性。该方法是现有APSRA方法的改进版本。该方法已应用于AHWR(先进重水反应堆)的被动隔离冷凝器系统(ICS)。借助APSRA〜+方法,估计无源ICS无法将复合温度保持在400℃以下的可能性约为1×10〜(-10)。 APSRA〜+的重要功能如下。首先,它提供了一种集成的动态可靠性方法,用于对动态故障特征(如多状态故障,故障增量和被动系统组件的时间相关故障率)进行一致处理。其次,该方法仅通过概率密度函数或根本原因分析就克服了过程参数处理的问题,方法是将参数分为相关的过程参数和独立的过程参数,然后分别对它们进行适当的处​​理。第三,该方法以一致的方式处理模型不确定性和独立的过程参数变化。在APSRA〜+中,使用灵敏度分析来确定影响所考虑的无源系统的重要参数。为了评估系统性能,使用了最佳估计的系统代码,并适当考虑了经验模型中的不确定性。通过更改所有已识别的重要参数来生成故障面;这些参数的标称值的变化会严重影响系统性能。然后,将这些参数分为从属和独立类别。对于相关参数,归因于过程参数的变化主要是由于机械组件或控制系统的故障,因此,进行了根本原因分析。这些依赖参数变化的可能性是使用基于蒙特卡洛模拟的动态可靠性方法估算的。在计算这些概率时要考虑所确定的因果组件/系统的动态故障特征。为了处理独立的过程参数,使用APSRA〜+建议采用和集成经典的数据拟合技术或数学模型。在接下来的步骤中,将使用生成的故障点来制定基于响应面的元模型。通过对所有相关和独立过程参数进行采样并分析足够数量的样本,并根据这些参数变化的概率(使用动态可靠性方法进行估算),可以估计系统处于故障区域的概率。

著录项

  • 来源
    《Nuclear Technology》 |2016年第1期|39-60|共22页
  • 作者单位

    Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India;

    Bhabha Atomic Research Centre, Reactor Engineering Division, Trombay, Mumbai 400085, India;

    Bhabha Atomic Research Centre, Reactor Safety Division, Trombay, Mumbai 400085, India;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Passive system reliability; RMPS; APSRA~+;

    机译:被动系统的可靠性;RMPS;APSRA〜+;
  • 入库时间 2022-08-18 00:42:46

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号