首页> 外文期刊>Nuclear science and engineering >A Polynomial Form for Higher-Order Accurate Quantification of Perturbation Effects in Nuclear Systems
【24h】

A Polynomial Form for Higher-Order Accurate Quantification of Perturbation Effects in Nuclear Systems

机译:高阶精确量化核系统扰动效应的多项式形式

获取原文
获取原文并翻译 | 示例
       

摘要

A methodology is presented that allows a higher-order accurate treatment of system perturbations that are assumed to have a substantial magnitude and therefore also a substantial effect on flux distributions in nuclear systems. Examples are localized material choice variations, burnable poison density variations at lattice level, complete fuel assembly permutations at core level, or specific uncertainties defined in the system composition. For these cases, it is necessary to raise the accuracy of the estimated responses above what can be achieved using first-order perturbation methods only, of course preferably without having to simply pursue computationally expensive exact recalculations for each case if the effects of many variations or uncertainties are to be assessed. Focusing on the neutronics of multiplying systems (without thermal-hydraulic feedback mechanisms incorporated), the setup of a polynomial form for quantification of the flux shape change due to imposed system perturbations is pursued. In a mathematical sense, this method allows one to set up a polynomial expansion of the change in the lowest-mode solution of the neutronics eigensystem due to an imposed perturbation in the operators determining the lowest-mode solution and eigenvalue. This form features the property that the flux shape change, caused by variations in certain parameters localized in space and energy, can be expanded polynomially up to higher-order accuracy, with the imposed system composition variations themselves as functional arguments. Numerical results, showing the validity of the method, are reported, and possible application areas are discussed.
机译:提出了一种方法,该方法可以对假设的系统扰动进行高阶准确处理,而系统扰动被认为具有很大的幅度,因此也对核系统中的通量分布产生了重大影响。例如局部材料选择变化,晶格水平的可燃毒物密度变化,核心水平的完整燃料组件排列或系统组成中定义的特定不确定性。对于这些情况,有必要将估计响应的准确性提高到仅使用一阶扰动方法所能达到的水平,当然,如果存在多种变化或变化的影响,则最好不必简单地对每种情况进行计算昂贵的精确重计算不确定性将被评估。着眼于倍增系统的中子学(不包含热液反馈机制),寻求一种用于量化由于施加的系统扰动而引起的通量形状变化的多项式形式。从数学意义上讲,由于确定最低模式解和本征值的操作者施加了扰动,因此该方法可以建立中子学本征系统最低模式解变化的多项式展开式。这种形式的特征是,由于空间和能量中局部参数的变化而引起的通量形状变化,可以多项式地扩展到更高的精度,而所施加的系统组成的变化本身就是功能参数。数值结果表明了该方法的有效性,并进行了报道,并讨论了可能的应用领域。

著录项

  • 来源
    《Nuclear science and engineering》 |2005年第1期|p.74-87|共14页
  • 作者

    R. van Geemert; F. Tani;

  • 作者单位

    Framatome ANP GmbH, P.O. Box 3220, D-91050 Erlangen, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 原子能技术;
  • 关键词

  • 入库时间 2022-08-18 00:44:52

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号