首页> 外文期刊>Nuclear science and engineering >The Impact of Power Uprate on the Corrosion Mitigation Effectiveness of Hydrogen Water Chemistry in Boiling Water Reactors
【24h】

The Impact of Power Uprate on the Corrosion Mitigation Effectiveness of Hydrogen Water Chemistry in Boiling Water Reactors

机译:功率提升对沸水反应堆中氢水化学缓蚀效果的影响

获取原文
获取原文并翻译 | 示例
       

摘要

In order to increase the power generation efficiency of nuclear reactors, the utilities of light water reactors have opted for power uprates in the past decades. Upon a power uprate, the power density and coolant flow rate of a nuclear reactor would change immediately, followed by water chemistry variations due to enhanced radiolysis of water and shortened coolant residence times. If the boiling water reactor (BWR) has adopted hydrogen water chemistry (HWC) for corrosion mitigation, the optimal hydrogen injection rate may thus require a proper adjustment. Because of limited measurable water chemistry data, a well-developed computer code DEMACE was used in the current study to investigate the impact of various power levels (ranging from 100 to 120%) on the redox species concentrations and electrochemical corrosion potential (ECP) behavior of components in the primary coolant circuit of a domestic BWR operating under either normal water chemistry or HWC. Our analyses indicated that the chemical species concentrations and the ECP did not vary monotonically with increases in reactor power level at a fixed feedwater hydrogen concentration. In particular, the upper plenum and the upper down-comer regions exhibited uniquely higher ECPs at 104 and 114% power levels than those at the other evaluated power levels. Accordingly, the impact of power uprate on the HWC effectiveness in a BWR is expected to vary from location to location and eventually from plant to plant because of different degrees of radiolysis and physical dimensions.
机译:为了提高核反应堆的发电效率,在过去的几十年中,轻水反应堆的公用事业选择提高功率。在功率增加时,核反应堆的功率密度和冷却剂流速将立即改变,随后由于水的放射分解增强和冷却剂停留时间缩短而导致水化学变化。如果沸水反应堆(BWR)已采用氢水化学(HWC)来减轻腐蚀,则最佳氢注入速率可能需要适当调整。由于可测量的水化学数据有限,当前研究中使用了发达的计算机代码DEMACE来研究各种功率水平(范围从100%到120%)对氧化还原物质浓度和电化学腐蚀电位(ECP)行为的影响在正常的水化学或HWC下运行的家用BWR的主冷却剂回路中的组件的数量。我们的分析表明,在固定给水氢气浓度下,化学物质浓度和ECP不会随反应堆功率水平的增加而单调变化。特别是,上增压室和上下游区域在功率水平为104%和114%时显示出比其他评估功率水平更高的ECP。因此,由于辐射分解程度和物理尺寸的不同,功率提升对BWR中HWC有效性的影响预计会因位置而异,最终因工厂而异。

著录项

  • 来源
    《Nuclear science and engineering》 |2008年第1期|98-107|共10页
  • 作者

    Tsung-Kuang Yeh; Mei-Ya Wang;

  • 作者单位
  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 00:44:13

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号