首页> 外文期刊>Nuclear Instruments & Methods in Physics Research >Time walk correction for TOF-PET detectors based on a monolithic scintillation crystal coupled to a photosensor array
【24h】

Time walk correction for TOF-PET detectors based on a monolithic scintillation crystal coupled to a photosensor array

机译:基于与光电传感器阵列耦合的单片闪烁晶体的TOF-PET检测器的时间步移校正

获取原文
获取原文并翻译 | 示例
           

摘要

When optimizing the timing performance of a time-of-flight positron emission tomography (TOF-PET) detector based on a monolithic scintillation crystal coupled to a photosensor array, time walk as a function of annihilation photon interaction location inside the crystal needs to be considered. In order to determine the 3D spatial coordinates of the annihilation photon interaction location, a maximum likelihood estimation algorithm was developed, based on a detector characterization by a scan of a 511 keV photon beam across the front and one of the side surfaces of the crystal. The time walk effect was investigated using a 20mm ×20mm × 12mm LYSO crystal coupled to a fast 4×4 multi-anode photomultiplier tube (MAPMT). In the plane parallel to the photosensor array, a spatial resolution of 2.4 mm FWHM is obtained. In the direction perpendicular to the MAPMT (depth-of-interaction, DOI), the resolution ranges from 2.3 mm FWHM near the MAPMT to 4 mm FWHM at a distance of 10 mm. These resolutions are uncorrected for the ~ 1 mm beam diameter. A coincidence timing resolution of 358 ps FWHM is obtained in coincidence with a BaF_2 detector. A time walk depending on the 3D annihilation photon interaction location is observed. Throughout the crystal, the time walk spans a range of 100ps. Calibration of the time walk vs. interaction location allows an event-by-event correction of the time walk.
机译:当基于耦合到光电传感器阵列的单片闪烁晶体优化飞行时间正电子发射断层扫描(TOF-PET)检测器的定时性能时,需要考虑时间漂移作为晶体内部an灭光子相互作用位置的函数。为了确定an灭光子相互作用位置的3D空间坐标,基于检测器特征,通过跨晶体的正面和侧面之一扫描511 keV光子束,开发了最大似然估计算法。使用20mm×20mm×12mm LYSO晶体与快速4×4多阳极光电倍增管(MAPMT)耦合,研究了时间步移效应。在与光电传感器阵列平行的平面中,获得了2.4 mm FWHM的空间分辨率。在垂直于MAPMT(交互深度,DOI)的方向上,分辨率范围从MAPMT附近的2.3mm FWHM到10mm处的4mm FWHM。对于〜1 mm的光束直径,这些分辨率未经校正。与BaF_2检测器一致,可获得358 ps FWHM的一致定时分辨率。观察到时间走动取决于3D ni灭光子的相互作用位置。在整个晶体中,时间步长跨度为100ps。校准时间步长与交互作用位置可以逐事件校正时间步长。

著录项

  • 来源
    《Nuclear Instruments & Methods in Physics Research》 |2010年第3期|P.595-604|共10页
  • 作者单位

    Kernfysisch Versneller Instituut, University of Croningen, Zernikelaan 25, 9747 AA Croningen, The Netherlands;

    rnKernfysisch Versneller Instituut, University of Croningen, Zernikelaan 25, 9747 AA Croningen, The Netherlands;

    rnDelft University of Technology, Mekelweg 15, 2629 JB Delft, The Netherlands;

    rnDelft University of Technology, Mekelweg 15, 2629 JB Delft, The Netherlands;

    rnDelft University of Technology, Mekelweg 15, 2629 JB Delft, The Netherlands;

    rnDelft University of Technology, Mekelweg 15, 2629 JB Delft, The Netherlands University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands;

    rnKernfysisch Versneller Instituut, University of Croningen, Zernikelaan 25, 9747 AA Croningen, The Netherlands;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    positron emission tomography timing resolution; TOF-PET; positioning algorithm;

    机译:正电子发射断层扫描定时分辨率;TOF-PET;定位算法;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号