【24h】

Advancing the Fork detector for quantitative spent nuclear fuel verification

机译:推进Fork探测器进行核废燃料定量验证

获取原文
获取原文并翻译 | 示例
           

摘要

The Fork detector is widely used by the safeguards inspectorate of the European Atomic Energy Community (EURATOM) and the International Atomic Energy Agency (IAEA) to verify spent nuclear fuel. Fork measurements are routinely performed for safeguards prior to dry storage cask loading. Additionally, spent fuel verification will be required at the facilities where encapsulation is performed for acceptance in the final repositories planned in Sweden and Finland. The use of the Fork detector as a quantitative instrument has not been prevalent due to the complexity of correlating the measured neutron and gamma ray signals with fuel inventories and operator declarations. A spent fuel data analysis module based on the ORIGEN burnup code was recently implemented to provide automated real-time analysis of Fork detector data. This module allows quantitative predictions of expected neutron count rates and gamma units as measured by the Fork detectors using safeguards declarations and available reactor operating data. This paper describes field testing of the Fork data analysis module using data acquired from 339 assemblies measured during routine dry cask loading inspection campaigns in Europe. Assemblies include both uranium oxide and mixed-oxide fuel assemblies. More recent measurements of 50 spent fuel assemblies at the Swedish Central Interim Storage Facility for Spent Nuclear Fuel are also analyzed. An evaluation of uncertainties in the Fork measurement data is performed to quantify the ability of the data analysis module to verify operator declarations and to develop quantitative goo-go criteria for safeguards verification measurements during cask loading or encapsulation operations. The goal of this approach is to provide safeguards inspectors with reliable real-time data analysis tools to rapidly identify discrepancies in operator declarations and to detect potential partial defects in spent fuel assemblies with improved reliability and minimal false positive alarms. The results are summarized, and sources and magnitudes of uncertainties are identified, and the impact of analysis uncertainties on the ability to confirm operator declarations is quantified.
机译:欧洲原子能共同体(EURATOM)和国际原子能机构(IAEA)的保障检查局广泛使用了叉子探测器来验证乏核燃料。为了安全起见,通常会在干燥存储桶装载之前对叉进行测量。此外,在瑞典和芬兰计划的最终储存库中,在进行封装以便接受的设施中,将需要对乏燃料进行验证。由于将测得的中子和伽马射线信号与燃料清单和操作员申报相关联的复杂性,使用前叉探测器作为定量工具尚未普及。最近实现了基于ORIGEN燃耗代码的乏燃料数据分析模块,以提供叉车探测器数据的自动化实时分析。该模块允许使用保障声明和可用的反应堆运行数据,对由叉探测器测得的预期中子计数率和伽马单位进行定量预测。本文介绍了在欧洲例行干桶装载检查活动中使用从339个组件获取的数据对货叉数据分析模块进行的现场测试。组件包括氧化铀和混合氧化物燃料组件。还分析了瑞典废核燃料中央临时存储设施中50个乏燃料组件的最新测量结果。对货叉测量数据中的不确定性进行评估,以量化数据分析模块验证操作员声明并制定定量的合格/不合格标准的能力,以在木桶装载或封装操作期间进行安全性验证测量。这种方法的目的是为安全检查员提供可靠的实时数据分析工具,以快速识别操作员声明中的差异,并以提高的可靠性和最少的误报警报来检测乏燃料组件中的潜在局部缺陷。总结结果,确定不确定性的来源和严重性,并量化分析不确定性对确认操作员声明的能力的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号