...
首页> 外文期刊>Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment >Improved Lithium Iodide neutron scintillator with Eu~(2+) activation Ⅱ: Activator zoning and concentration effects in Bridgman-grown crystals
【24h】

Improved Lithium Iodide neutron scintillator with Eu~(2+) activation Ⅱ: Activator zoning and concentration effects in Bridgman-grown crystals

机译:Eu〜(2+)活化的改进的碘化锂中子闪烁体Ⅱ:布里奇曼生长晶体中的活化剂分区和浓度效应

获取原文
获取原文并翻译 | 示例

摘要

We have previously reported on the formation of Suzuki Phase precipitate particles as a result of the addition of the divalent activator ion Eu2+to the monovalent alkali halide host LiI. [Boatner et al. (2017)]. These precipitates form during Bridgman or other melt-growth processes, even at low Eu2+concentrations (e.g., 0.1% EuI2doping), and scatter the scintillation light reducing the optical transparency of the scintillator and adversely affecting its radiation-detection performance. In our prior work, we developed a two-stage thermal-treatment method for the post-growth removal of the Suzuki Phase particles and the realization of a significant improvement in the optical transparency and associated neutron-detection of LiI:Eu2+scintillators. These improvements resulted in neutron-detection performance that is superior to GS-20 glass and that allows for the application of pulse height gamma-ray discrimination over a wide range of gamma ray energies as opposed to pulse shape discrimination. Here, we apply the two-stage thermal-processing method for the removal of Suzuki phase precipitates and carry out an in-depth study, first, of the neutron scintillator performance versus the Eu2+activator-ion-concentration spatial variation as a result of zoning effects during the Bridgman growth of LiI:Eu2+and, second, of the effects of varying the initial Eu2+activator ion concentration prior to crystal growth. The Eu2+zoning variation results allow one to identify and select the most efficient location of the scintillation performance in a directionally solidified single-crystal boule. The present study of the initial activator concentration levels shows that there are, in fact, two distinct types of luminescence centers with varying performance properties — one that occurs only at low EuI2addition levels (e.g., 0.01 to 0.06 %EuI2) and that is quickly replaced by a second luminescing center with increasing Eu2+content (e.g., at∼0.1% EuI2). The light yield for the luminescing center formed using a Eu activator in LiI is a critical function of the Eu concentration in the range of 0.01 to 0.1 % EuI2, and a high light yield of 100,000 photonseutron is observed at the 0.06 %EuI2additive level prior to thermal processing.
机译:我们先前已经报道过由于将二价活化剂离子Eu2 +添加到一价碱金属卤化物主体LiI中而形成的铃木相沉淀颗粒。 [Boatner等。 (2017)]。即使在低Eu2 +浓度(例如0.1%EuI2掺杂)下,这些沉淀物也会在Bridgman或其他熔体生长过程中形成,并散射闪烁光,从而降低了闪烁体的光学透明度,并不利地影响了其辐射探测性能。在我们先前的工作中,我们开发了一种两阶段热处理方法,用于生长后去除Suzuki相颗粒,并实现LiI:Eu2 +闪烁体的光学透明性和相关中子检测的显着改善。这些改进导致了中子探测性能优于GS-20玻璃,并允许在较宽的伽马射线能量范围内应用脉冲高度伽马射线识别,这与脉冲形状识别相反。在此,我们采用两阶段热处理方法去除铃木相沉淀物,并进行了深入的研究,首先,研究了中子闪烁体性能与Eu2 +活化剂离子浓度随空间变化的关系。 LiI:Eu2 +在Bridgman生长过程中的分区效应,其次是在晶体生长之前改变初始Eu2 +活化剂离子浓度的影响。 Eu2 +分区变化结果使人们能够确定并选择定向凝固的单晶晶锭中闪烁性能的最有效位置。当前对初始活化剂浓度水平的研究表明,实际上存在两种不同类型的发光中心,它们具有不同的性能-一种仅在低EuI2添加水平(例如0.01至0.06%%EuI2)下发生,并很快被替换通过第二发光中心增加Eu2 +含量(例如〜0.1%EuI2)。在LiI中使用Eu活化剂形成的发光中心的发光量是Eu浓度在0.01至0.1%EuI2范围内的关键函数,在0.06%EuI2加成水平下可观察到100,000个光子/中子的高发光量在热处理之前。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号