首页> 外文期刊>Nuclear fusion >Long pulse advanced tokamak discharges in the DIII-D tokamak
【24h】

Long pulse advanced tokamak discharges in the DIII-D tokamak

机译:DIII-D托卡马克中的长脉冲高级托卡马克放电

获取原文
获取原文并翻译 | 示例
       

摘要

One of the main goals for the DIII-D research programme is to establish an advanced tokamak (AT) plasma with high bootstrap current fraction that can be sustained in-principle steady-state. Substantial progress has been made in several areas during the last year. The resistive wall model (RWM) stabilization has been done with spinning plasmas in which the plasma pressure has been extended well above the no-wall beta limit. The 3/2 neoclassical tearing mode (NTM) has been stabilized by electron cyclotron heating (ECH) of the magnetic islands, which drives current to substitute the missing bootstrap current. In these experiments either the plasma was moved or the toroidal field was changed to overlap the ECH resonance with the location of the NTMs. Effective disruption mitigation has been obtained yb massive noble gas injection into shots where disruptions were deliberately triggered. The massive gas puff causes a fast and clean current quench with essentially all the plasma energy radiated fairly uniformly to the vessel walls. The run-away electrons that are normally seen accompanying disruptions are suppressed by the large density of electrons still bound on the impurity nuclei. Major elements required to establish integrated, long pulse, AT operations have been achieved in DIII-D: β_T = 4.2%, β_P = 2, f_(BS) = 65%, and β_NH_(89P) = 10 for 600 ms (~4τE). The next challenge is to integrate the different elements, which will be the goal for the next five years when additional control will be available. Twelve RWM coils are scheduled to be installed in DIII-D during the summer of 2003. Future plans include upgrading the tokamak pulse length capability and increasing the ECH power, to control the current profile evolution.
机译:DIII-D研究计划的主要目标之一是建立一种具有高自举电流分数且可以在原理上保持稳定的先进托卡马克(AT)等离子体。去年,在几个领域都取得了实质性进展。电阻壁模型(RWM)的稳定化是通过旋转等离子体完成的,其中等离子体压力已远远超过无壁beta极限。 3/2新古典撕裂模式(NTM)已通过磁岛的电子回旋加速器加热(ECH)得以稳定,该驱动器驱动电流来替代缺少的自举电流。在这些实验中,或者移动了等离子体,或者改变了环形磁场,使ECH共振与NTM的位置重叠。通过将惰性气体大量注入到故意触发中断的镜头中,可以有效地缓解中断。大量的气体抽吸会导致快速,干净的电流淬灭,基本上所有等离子能量都相当均匀地辐射到血管壁上。正常情况下伴随着破坏而出现的失控电子被仍然束缚在杂质核上的高密度电子所抑制。在DIII-D中已实现建立集成的长脉冲AT操作所需的主要元素:600 ms(〜4τE),β_T= 4.2%,β_P= 2,f_(BS)= 65%,β_NH_(89P)= 10 )。下一个挑战是整合不同的元素,这将是未来五年内实现更多控制的目标。十二个RWM线圈计划在2003年夏季安装在DIII-D中。未来的计划包括升级托卡马克脉冲长度功能和增加ECH功率,以控制当前曲线的变化。

著录项

  • 来源
    《Nuclear fusion》 |2003年第9期|p. 812-816|共5页
  • 作者

  • 作者单位
  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 原子核物理学、高能物理学;
  • 关键词

  • 入库时间 2022-08-18 00:50:15

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号