首页> 外文期刊>Nuclear fusion >Performance of ITER as a burning plasma experiment
【24h】

Performance of ITER as a burning plasma experiment

机译:ITER作为燃烧等离子体实验的性能

获取原文
获取原文并翻译 | 示例
       

摘要

Recent performance analysis has improved confidence in achieving Q (= fusion power/auxiliary heating power) ≥ 10 in inductive operation in ITER. Performance analysis based on empirical scalings shows the feasibility of achieving Q ≥ 10 in inductive operation, particularly with improved modelling of helium exhaust. Analysis has also indicated the possibility that ITER can potentially demonstrate Q ~ 50, enabling studies of self-heated plasmas. Theory-based core modelling indicates the need for a high pedestal temperature (3.2–5.3 keV) to achieve Q ≥ 10, which is in the range of projections with presently available pedestal scalings. Pellet injection from the high-field side would be useful in enhancing Q and reducing edge localized mode (ELM) heat load in high plasma current operation. If the ELM heat load is not acceptable, it could be made tolerable by further tilting the target plate. Steady state operation scenarios at Q = 5 have been developed with modest requirements on confinement improvement and beta (H_(H98(y,2)) ≥ 1.3 and β_N ≥ 2.6). Stabilization of the resistive wall modes (RWMs), required in such regimes, is feasible with the present saddle coils and power supplies with double-wall structures taken into account. Recent analysis shows a potential of high power steady state operation with a fusion power of 0.7 GW at Q ~ 8. Achievement of the required β_N ~ 3.6 by RWM stabilization is a possibility. Further analysis is also needed on reduction of the divertor target heat load.
机译:最近的性能分析提高了在ITER感应操作中达到Q(=聚变功率/辅助加热功率)≥10的信心。基于经验标度的性能分析显示了在感应运行中达到Q≥10的可行性,特别是在改善氦气排放模型的情况下。分析还表明,ITER可能显示Q〜50的可能性,从而可以研究自热等离子体。基于理论的岩​​心建模表明需要较高的基座温度(3.2–5.3 keV)才能达到Q≥10,这在具有当前可用基座缩放比例的投影范围内。在高等离子体电流操作中,从高场侧进行球团注入将有助于提高Q值并减少边缘局部模式(ELM)热负荷。如果ELM热负荷不可接受,则可以通过进一步倾斜目标板来使其承受。已经开发了Q = 5的稳态操作场景,对限制条件的改进和beta(H_(H98(y,2))≥1.3和β_N≥2.6)有适度的要求。在目前的鞍形线圈和具有双壁结构的电源中,在这种情况下需要稳定电阻壁模(RWM)是可行的。最近的分析表明,在Q〜8时,融合功率为0.7 GW的大功率稳态工作具有潜力。通过RWM稳定化,有可能达到所需的β_N〜3.6。还需要进一步分析以降低滤清器目标热负荷。

著录项

  • 来源
    《Nuclear fusion》 |2004年第2期|p. 350-356|共7页
  • 作者单位

    International Team, ITER Naka JWS, Mukouyama, Naka-machi, Naka-gun, Ibaraki-ken, 311-0193, Japan;

    International Team, ITER Naka JWS, Mukouyama, Naka-machi, Naka-gun, Ibaraki-ken, 311-0193, Japan;

    International Team, ITER Garching JWS, Garching, Germany;

    International Team, ITER Naka JWS, Mukouyama, Naka-machi, Naka-gun, Ibaraki-ken, 311-0193, Japan;

    International Team, ITER Garching JWS, Garching, Germany;

    Toshiba Corp., Minato-ku, Tokyo, Japan;

    International Team, ITER Naka JWS, Mukouyama, Naka-machi, Naka-gun, Ibaraki-ken, 311-0193, Japan;

    Kurchatov Institute, Moscow, Russia;

    Japan Atomic Energy Research Institute, Naka-machi, Ibaraki-ken, Japan;

    International Team, ITER Naka JWS, Mukouyama, Naka-machi, Naka-gun, Ibaraki-ken, 311-0193, Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 原子核物理学、高能物理学;
  • 关键词

  • 入库时间 2022-08-18 00:49:50

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号