首页> 外文期刊>Nuclear fusion >Benchmark experiments on neutron streaming through JET Torus Hall penetrations
【24h】

Benchmark experiments on neutron streaming through JET Torus Hall penetrations

机译:通过JET Torus Hall穿透的中子流的基准实验

获取原文
获取原文并翻译 | 示例
       

摘要

Neutronics experiments are performed at JET for validating in a real fusion environment the neutronics codes and nuclear data applied in ITER nuclear analyses. In particular, the neutron fluence through the penetrations of the JET torus hall is measured and compared with calculations to assess the capability of state-of-art numerical tools to correctly predict the radiation streaming in the ITER biological shield penetrations up to large distances from the neutron source, in large and complex geometries. Neutron streaming experiments started in 2012 when several hundreds of very sensitive thermo-Iuminescence detectors (TLDs), enriched to different levels in ~6LiF/~7LiF, were used to measure the neutron and gamma dose separately. Lessons learnt from this first experiment led to significant improvements in the experimental arrangements to reduce the effects due to directional neutron source and self-shielding of TLDs. Here we report the results of measurements performed during the 2013-2014 JET campaign. Data from new positions, at further locations in the South West labyrinth and down to the Torus Hall basement through the air duct chimney, were obtained up to about a 40 m distance from the plasma neutron source. In order to avoid interference between TLDs due to self-shielding effects, only TLDs containing natural Lithium and 99.97% ~7Li were used. All TLDs were located in the centre of large polyethylene (PE) moderators, with ~(nat)Li and ~7Li crystals evenly arranged within two PE containers, one in horizontal and the other in vertical orientation, to investigate the shadowing effect in the directional neutron field. All TLDs were calibrated in the quantities of air kerma and neutron fluence. This improved experimental arrangement led to reduced statistical spread in the experimental data. The Monte Carlo N-Particle (MCNP) code was used to calculate the air kerma due to neutrons and the neutron fluence at detector positions, using a JET model validated up to the magnetic limbs. JET biological shield and penetrations, the PE moderators and TLDs were modelled in detail. Different tallying methods were used in the calculations, which are routinely used in ITER nuclear analyses: the mesh tally and the track length estimator with multiple steps calculations using the surface source write/read capability available in MCNP. In both cases, the calculated neutron fluence (C) was compared to the measured fluence (E) and hence C/E comparisons have been obtained and are discussed. These results provide a validation of neutronics numerical tools, codes and nuclear data, used for ITER design.
机译:在JET进行了中子学实验,以验证在实际聚变环境中ITER核分析中应用的中子学代码和核数据。特别是,测量通过JET环面穿透的中子通量,并将其与计算结果进行比较,以评估最新的数值工具正确预测ITER生物屏蔽穿透中的辐射流的能力,该穿透距离与ITER生物屏蔽体的距离较大。大型和复杂几何形状的中子源。中子流实验始于2012年,当时数百个非常敏感的热发光检测器(TLD)分别以〜6LiF /〜7LiF的浓度富集到不同水平,分别用于测量中子和伽马剂量。从第一个实验中学到的经验教训导致对实验装置的重大改进,以减少由于定向中子源和TLD自屏蔽而产生的影响。在这里,我们报告了2013-2014 JET活动期间进行的测量结果。从西南迷宫的其他位置到新的位置的数据,通过空气导管烟囱一直到Torus Hall地下室,都获得了距等离子体中子源约40 m的距离的数据。为了避免由于自屏蔽效应而造成的TLD之间的干扰,仅使用了包含天然锂和99.97%〜7Li的TLD。所有TLD均位于大型聚乙烯(PE)调节剂的中心,〜(nat)Li和〜7Li晶体均匀地排列在两个PE容器中,一个在水平方向上,另一个在垂直方向上,以研究定向方向上的阴影效应中子场。所有TLD均根据空气比释动能和中子注量进行了校准。这种改进的实验安排导致减少了实验数据的统计分布。使用经过验证的JET模型,使用蒙特卡罗N粒子(MCNP)代码计算由于中子和探测器位置处的中子注量引起的空气比释动能。对JET生物防护层和渗透层,PE调节剂和TLD进行了详细建模。在计算中使用了不同的计数方法,这些方法通常用于ITER核分析中:使用MCNP中可用的表面源写入/读取功能,通过多步计算来计算网格记号和轨道长度估算器。在这两种情况下,都将计算出的中子注量(C)与测得的注量(E)进行了比较,因此获得了C / E比较并进行了讨论。这些结果验证了用于ITER设计的中子学数字工具,代码和核数据。

著录项

  • 来源
    《Nuclear fusion》 |2015年第5期|053028.1-053028.14|共14页
  • 作者单位

    EUROfusion Consortium, JET, Culham Science Centre, Abingdon, OX14 3DB, UK ENEA-Fusion Technical Unit, Via E. Fermi, 45, I-00044 Frascati (Rome), Italy;

    EUROfusion Consortium, JET, Culham Science Centre, Abingdon, OX14 3DB, UK Department of Physics and Astronomy, Uppsala University, Box 516, 751 20 Uppsala, Sweden;

    EUROfusion Consortium, JET, Culham Science Centre, Abingdon, OX14 3DB, UK CCFE, Culham Science Centre, Abingdon, Oxfordshire, OX14 3DB, UK;

    EUROfusion Consortium, JET, Culham Science Centre, Abingdon, OX14 3DB, UK CCFE, Culham Science Centre, Abingdon, Oxfordshire, OX14 3DB, UK;

    EUROfusion Consortium, JET, Culham Science Centre, Abingdon, OX14 3DB, UK Institute of Nuclear Physics Polish Academy of Sciences, ul. Radzikowskiego 152, 31-342 Krakow, Poland;

    EUROfusion Consortium, JET, Culham Science Centre, Abingdon, OX14 3DB, UK CCFE, Culham Science Centre, Abingdon, Oxfordshire, OX14 3DB, UK;

    EUROfusion Consortium, JET, Culham Science Centre, Abingdon, OX14 3DB, UK Institute of Nuclear and Radiological Sciences, Energy, Technology and Safety, National Centre for Scientific Research Demokritos, Athens, Greece;

    EUROfusion Consortium, JET, Culham Science Centre, Abingdon, OX14 3DB, UK CCFE, Culham Science Centre, Abingdon, Oxfordshire, OX14 3DB, UK;

    EUROfusion Consortium, JET, Culham Science Centre, Abingdon, OX14 3DB, UK Institute of Nuclear and Radiological Sciences, Energy, Technology and Safety, National Centre for Scientific Research Demokritos, Athens, Greece;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    JET neutron yield; fusion neutronics; benchmark experiment;

    机译:JET中子产率;聚变中子学基准实验;
  • 入库时间 2022-08-18 00:42:31

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号