首页> 外文期刊>Nuclear fusion >Density gradient driven microinstabilities and turbulence in ASDEX Upgrade pellet fuelled plasmas
【24h】

Density gradient driven microinstabilities and turbulence in ASDEX Upgrade pellet fuelled plasmas

机译:密度梯度驱动的ASDEX升级颗粒燃料等离子体的微不稳定性和湍流

获取原文
获取原文并翻译 | 示例
       

摘要

ASDEX Upgrade plasmas fuelled by pellets in the H-mode confinement regime are analyzed. The gyrokinetic code GKW is applied to calculate the microinstabilities which are predicted to be unstable in these plasmas. Two types of density gradient driven modes are found, outside and inside the pellet deposition location. The first mode is driven by a negative radial density gradient, and corresponds to the usual density gradient driven trapped electron mode instability, producing a large diffusive particle flux directed outwards, and becomes more unstable with increasing trapped particle fraction and with decreasing collisionality. The second is driven by a positive radial density gradient (that is, a locally hollow density profile) and is identified for the first time in this work. The instability is located in the proximity of the high field side of the poloidal cross section, and drives a diffusive particle flux directed inward. It is mainly produced by the non-adiabatic response of passing particles with low parallel velocities at high collisionality and it becomes more unstable with increasing passing particle fraction and increasing collision frequency. Nonlinear gyrokinetic turbulence simulations show that these instabilities can lead to saturated turbulence and produce particle diffusion at experimentally relevant levels. In contrast to the usual behavior of the turbulent fields in tokamak plasmas, which have largest fluctuations on the low field side, locally hollow density profiles are prediced to lead to turbulent electrostatic potential and density fluctuations which are maximum on the high field side of the torus.
机译:分析了在H模式限制条件下由小球提供燃料的ASDEX升级血浆。旋动代码GKW用于计算预计在这些等离子体中不稳定的微观不稳定性。发现了两种类型的密度梯度驱动模式,即颗粒沉积位置的内部和外部。第一模式由负的径向密度梯度驱动,并且与通常的密度梯度驱动的俘获电子模式不稳定性相对应,产生向外的大扩散粒子通量,并且随着俘获粒子分数的增加和碰撞性的降低而变得更加不稳定。第二个是由正的径向密度梯度(即局部空心密度分布图)驱动的,并且在这项工作中首次被确定。该不稳定性位于多倍体横截面的高电场侧附近,并驱动向内指向的扩散粒子通量。它主要是由高平行度下具有较低平行速度的通过粒子的非绝热响应引起的,并且随着通过粒子分数的增加和碰撞频率的增加而变得更加不稳定。非线性动力动力学湍流仿真表明,这些不稳定性会导致饱和湍流,并在实验相关水平上产生粒子扩散。与托卡马克等离子体中通常在低场一侧具有最大波动的湍流行为相反,局部中空密度分布被认为会导致在环的高场一侧产生最大的湍流静电势和密度波动。 。

著录项

  • 来源
    《Nuclear fusion》 |2017年第11期|116053.1-116053.18|共18页
  • 作者单位

    Max-Planck-Institut für Plasmaphysik, Garching, Germany;

    Max-Planck-Institut für Plasmaphysik, Garching, Germany;

    Max-Planck-Institut für Plasmaphysik, Garching, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    microinstabilities; particle transport; pellets; tokamak;

    机译:微不稳定性颗粒运输颗粒托卡马克;
  • 入库时间 2022-08-18 00:41:42

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号