首页> 外文期刊>Nuclear fusion >Assessment of alternative divertor configurations as an exhaust solution for DEMO
【24h】

Assessment of alternative divertor configurations as an exhaust solution for DEMO

机译:作为演示的排气解决方案评估替代方向性配置的评估

获取原文
获取原文并翻译 | 示例
           

摘要

Plasma exhaust has been identified as a major challenge towards the realisation of magnetic confinement fusion. To mitigate the risk that the single null divertor (SND) with a high radiation fraction in the scrape-of-layer (SOL) adopted for ITER will not extrapolate to a DEMO reactor, the EUROfusion consortium is assessing potential benefits and engineering challenges of alternative divertor configurations. Alternative configurations that could be readily adopted in a DEMO design include the Ⅹ divertor (XD), the Super-X divertor (SXD), the Snowflake divertor (SFD) and the double null divertor (DND). The flux flaring towards the divertor target of the XD is limited by the minimum grazing angle at the target set by gaps and misalignments. The characteristic increase of the target radius in the SXD is a trade-off with the increased TF coil volume, but, ultimately, also limited by forces onto coils. Engineering constraints also limit XD and SXD characteristics to the outer divertor leg with a solution for the inner leg requiring up-down symmetric configurations. Capital cost increases with respect to a SND configuration are largest for SXD and SFD, which require both significantly more poloidal field coil conductors and in the case of the SXD also more toroidal field coil conductors. Boundary models with increasing degrees of complexity have been used to predict the beneficial effect of the alternative configurations on exhaust performance. While all alternative configurations should decrease the power that must be radiated in the outer divertor, only the DND and possibly the SFD also ease the radiation requirements in the inner divertor. These decreases of the radiation requirements are however expected to be small making the ability of alternative divertors to increase divertor radiation without excessive core performance degradation their main advantage. Initial 2D fluid modeling of argon seeding in XD and SFD configurations indicate such advantages over the SND, while results for SXD and DND are still pending. Additional improvements, expected from increased turbulence in the low poloidal field region of the SFD also remain to be verified. A more precise comparison with the SND as well as absolute quantitative predictions for all configurations requires more complete physics models that are currently only being developed.
机译:等离子体排气已被确定为实现磁控隔离融合的主要挑战。为了减轻为ITER采用的层刮(SOL)中具有高辐射分数的风险将不会推断到演示反应堆,欧元产集团正在评估替代方案的潜在利益和工程挑战verepter配置。可以在演示设计中容易地采用的替代配置包括ⅹ偏移器(XD),超X vertiver(SXD),雪花偏移器(SFD)和双零偏移器(DND)。朝向XD的转移器靶向子的磁通量由间隙和未对准设置的目标设置的最小放牧角度限制。 SXD中目标半径的特征增加是具有增加的TF线圈容积的折衷,但最终也受到线圈上的力量的限制。工程限制还将XD和SXD特性限制在外部偏移器腿上,用需要上下对称配置的内腿的解决方案。对于SXD和SFD来说,SXD配置最大的资本成本增加,这需要具有明显更多的单极场线圈导体,并且在SXD的情况下更具环形磁场线圈导体。具有增加复杂程度的边界模型已经用于预测替代配置对排气性能的有益效果。虽然所有替代配置都应降低必须在外部偏移器中辐射的功率,但只有DND和可能的SFD也可以缓解内侧偏移器中的辐射要求。然而,辐射要求的降低预计将小使得替代偏移能够增加偏移器辐射而不会过度核心性能降低其主要优点。 XD和SFD配置中氩接种的初始2D流体建模,表明SXD和DND的结果仍在等待。还剩余核实来自SFD的低单极场区域中的增加的湍流增加的额外改进。与SND的更精确的比较以及所有配置的绝对定量预测需要更多的完整物理模型,目前仅开发。

著录项

  • 来源
    《Nuclear fusion》 |2020年第6期|066030.1-066030.16|共16页
  • 作者单位

    Ecole Polytechnique Federate de Lausanne (EPFL) Swiss Plasma Center (SPC) Lausanne Switzerland;

    Consorzio CREATE Universita' degli Studi di Napoli Federico Ⅱ Naples Italy;

    Consorzio RFX Padova Italy;

    Consorzio CREATE Universita' degli Studi di Napoli Federico Ⅱ Naples Italy;

    Institute for Plasma Physics and Laser Microfusion (IPPLM) Warsaw Poland;

    Consorzio CREATE Universita' degli Studi di Napoli Federico Ⅱ Naples Italy;

    CCFE Culham Science Centre Abingdon United Kingdom of Great Britain and Northern Ireland;

    Institute for Plasma Physics and Laser Microfusion (IPPLM) Warsaw Poland;

    VTT Technical Research Centre of Finland Ltd Espoo Finland;

    Consorzio CREATE Universita' degli Studi di Napoli Federico Ⅱ Naples Italy;

    IRFM CEA Cadarache St. Paul-lez-Durance France;

    Department of Economics Engineering Society and Business Organization University of Tuscia Viterbo Italy;

    IRFM CEA Cadarache St. Paul-lez-Durance France;

    Max-Planck Institute for Plasma Physics Garching Germany;

    IRFM CEA Cadarache St. Paul-lez-Durance France;

    CCFE Culham Science Centre Abingdon United Kingdom of Great Britain and Northern Ireland;

    EUROfusion PMU Boltzmannstr. 2 Garching Germany;

    Max-Planck Institute for Plasma Physics Garching Germany;

    Consorzio CREATE Universita' degli Studi di Napoli Federico Ⅱ Naples Italy Universita degli Studi del Sannio Dipartimento di Ingegneria Benevento Italy;

    Max-Planck Institute for Plasma Physics Garching Germany;

    Consorzio CREATE Universita' degli Studi di Napoli Federico Ⅱ Naples Italy University of Trieste Department of Engineering and Architecture Trieste Italy;

    Ecole Polytechnique Federate de Lausanne (EPFL) Swiss Plasma Center (SPC) Lausanne Switzerland;

    CCFE Culham Science Centre Abingdon United Kingdom of Great Britain and Northern Ireland;

    ENEA Frascati Italy;

    Dipartimento Energia Politecnico di Torino Turin Italy;

    KIT Karlsruhe Germany;

    National Centre for Nuclear Research Otwock Poland;

    Max-Planck Institute for Plasma Physics Garching Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    DEMO; fusion reactor; plasma exhaust; divertor;

    机译:演示;聚变反应堆;等离子体排气;隅兽者;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号