首页> 外文期刊>Nuclear fusion >Experimental response of the divertor particle flux to internal transport barrier dynamics in EAST high-βN discharges
【24h】

Experimental response of the divertor particle flux to internal transport barrier dynamics in EAST high-βN discharges

机译:EAST高βN放电中偏滤器通量对内部输运势垒动力学的实验响应

获取原文
获取原文并翻译 | 示例
           

摘要

Experiments in EAST have concentrated on studying the internal transport barrier (ITB) regime in high normalized beta (βN) discharges, where the study of the compatibility between ITB dynamics and divertor plasmas is an important step for future steady-state and high-performance plasma operations. In this work, the characteristics of the divertor particle flux and their responses to ITB dynamics have been studied in high-βN discharges. In order to describe the characteristics, the ITB duration is divided into two phases: phase I (i.e. ITB formation) and phase II (i.e. ITB degradation), according to the variation of plasma stored energy. In phase I, the particle flux near the inner strike point (SP) is continuously enhanced during the inter-edge-localized mode (ELM) phase in both the lower single-null and upper single-null configurations. The total particle flux in the scrape-off layer (SOL) region reveals a similar trend with an increase of the flux near the SP. However, in the private flux region (PFR) the total particle flux shows a reduction. Meanwhile, a movement of the SP away from the divertor corner is also observed during the ITB formation. In phase II, the particle flux near the inner SP, the total particle flux in the inner SOL and PFR region recover to their initial level before ITB formation, respectively. Additionally, the particle decay length is obviously reduced in phase I and then gradually enhanced in phase II. The continuous variation of the particle flux at the inner divertor target is in accordance with a compression of the magnetic flux surfaces due to ITB formation, which increases the gradient of electron density in the edge region. It is indicative that the ITB has a feasible impact on the behavior of divertor plasmas by means of increasing the Shafranov shift during the inter-ELM phase.
机译:EAST中的实验着重于研究高归一化β(βN)放电中的内部传输垒(ITB)方案,其中研究ITB动力学与偏滤器等离子体之间的相容性是未来稳态和高性能等离子体的重要一步操作。在这项工作中,已经研究了在高βN放电中偏滤器粒子通量的特性及其对ITB动力学的响应。为了描述特征,根据血浆存储能量的变化,ITB持续时间分为两个阶段:阶段I(即,ITB形成)和阶段II(即,ITB降解)。在阶段I中,在下部单零点和上部单零点配置中,在边缘间局部模式(ELM)阶段,内部打击点(SP)附近的粒子通量不断提高。刮除层(SOL)区域中的总粒子通量显示出类似的趋势,随着SP附近通量的增加。但是,在专用通量区域(PFR)中,总粒子通量显示减少。同时,在ITB的形成过程中,还观察到SP离开分叉角的运动。在阶段II中,内部SP附近的粒子通量,内部SOL和PFR区域中的总粒子通量分别恢复到ITB形成之前的初始水平。此外,粒子衰减长度在阶段I中明显减小,然后在阶段II中逐渐增大。内扩散器目标处的粒子通量的连续变化是由于ITB形成导致的磁通量表面的压缩,这会增加边缘区域电子密度的梯度。这表明ITB通过在ELM间阶段增加Shafranov位移对偏滤器等离子体的行为产生了可行的影响。

著录项

  • 来源
    《Nuclear fusion》 |2020年第3期|036008 (12pp).1-036008 (12pp).12|共12页
  • 作者

  • 作者单位

    Institute of Plasma Physics Chinese Academy of Sciences Hefei 230031 China University of Science and Technology of China Hefei 230026 China;

    Institute of Plasma Physics Chinese Academy of Sciences Hefei 230031 China;

    Advanced Energy Research Center Shenzhen University Shenzhen 518060 China Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Optoelectronic Engineering Shenzhen University Shenzhen 518060 China;

    University of Science and Technology of China Hefei 230026 China;

    Institute of Plasma Physics Chinese Academy of Sciences Hefei 230031 China University of Science and Technology of China Hefei 230026 China Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Optoelectronic Engineering Shenzhen University Shenzhen 518060 China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    internal transport barrier; high normalized beta; divertor particle flux; Shafranov shift; tokamak;

    机译:内部运输壁垒;高归一化贝塔值;偏滤器粒子通量;沙夫拉诺夫(Shafranov)转变;托卡马克;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号