首页> 外文期刊>Nuclear fusion >Sensitivity analysis of fusion power plant designs using the SYCOMORE system code
【24h】

Sensitivity analysis of fusion power plant designs using the SYCOMORE system code

机译:使用SYCOMORE系统代码对聚变电厂设计进行敏感性分析

获取原文
获取原文并翻译 | 示例
       

摘要

The next step after ITER is the demonstration of stable electricity production with a fusion reactor. Key design performance will have to be met by the corresponding power plant demonstrator (DEMO), fulfilling a large number of constraints. System codes such as SYCOMORE, by simulating all the fusion power plant sub-systems, address these questions. To be able to perform design optimizations, simplified models relying on physical and technological assumptions have to be used, resulting in a large number of input parameters. As these parameters are not always exactly known, the impact of their associated uncertainties on final design performance has to be evaluated. Sensitivity methods, by measuring the relative influence of inputs on the figures of merit of the design, allow the dominant parameters to be selected. This information helps the search for optimal working points, guides the priority for technical improvements and finally allows meaningful inputs for uncertainty propagation to be selected. A full set of sensitivity methods and their application to an ITER and DEMO design will be presented, discussing both the statistical method behaviours and the physical results. Plasma shape parameters (minor radius and plasma elongations) share half of the net electricity power sensitivity for the DEMO 2015 design, while the toroidal magnetic field and the 95% safety factor are responsible for 23% and 17% of the electric power sensitivity, respectively. The plasma minor radius is responsible for 45% of the pulse duration sensitivity for the DEMO 2015 design, while plasma physics parameters drive % of the pulse duration sensitivity.
机译:国际热核实验堆之后的下一步是通过核聚变反应堆证明稳定的电力生产。关键的设计性能将必须由相应的电厂演示器(DEMO)来满足,并满足许多约束条件。系统代码(例如SYCOMORE)通过模拟所有聚变电厂子系统来解决这些问题。为了能够进行设计优化,必须使用依赖于物理和技术假设的简化模型,从而产生大量输入参数。由于并不总是确切知道这些参数,因此必须评估其相关不确定性对最终设计性能的影响。通过测量输入对设计品质因数的相对影响,灵敏度方法可以选择主要参数。该信息有助于寻找最佳工作点,指导技术改进的优先级,并最终为不确定性传播选择有意义的输入。将介绍全套灵敏度方法及其在ITER和DEMO设计中的应用,同时讨论统计方法的行为和物理结果。等离子体形状参数(最小半径和等离子体伸长率)共享DEMO 2015设计的净电功率灵敏度的一半,而环形磁场和95%的安全系数分别占电功率灵敏度的23%和17% 。等离子体次半径占DEMO 2015设计脉冲持续时间灵敏度的45%,而等离子体物理参数则驱动脉冲持续时间灵敏度的%。

著录项

  • 来源
    《Nuclear fusion》 |2020年第1期|016015.1-016015.19|共19页
  • 作者

  • 作者单位

    CEA IRFM F-13108 St Paul Les Durance France;

    CEA Saclay DEN SERMA DM2S F-91191 Gif Sur Yvette France;

    CEA Saclay DEN STMF F-91191 Gif Sur Yvette France;

    IAEA Vienna Int Ctr POB 100 A-1400 Vienna Austria;

    Aix Marseille Univ CNRS Cent Marseille M2P2 Marseille France;

    Poznan Supercomp & Networking Ctr Noskowskiego 12-14 PL-61704 Poznan Poland|IChb PAS Noskowskiego 12-14 PL-61704 Poznan Poland;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    DEMO; ITER; sensitivity; system codes; SYCOMORE; uncertainty;

    机译:演示;ITER;灵敏度;系统代码;SYCOMORE;不确定;
  • 入库时间 2022-08-18 05:21:30

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号