首页> 外文期刊>Nuclear fusion >Runaway electron modelling in the self-consistent core European Transport Simulator
【24h】

Runaway electron modelling in the self-consistent core European Transport Simulator

机译:自洽核心欧洲运输模拟器中的失控电子建模

获取原文
获取原文并翻译 | 示例
       

摘要

Relativistic runaway electrons are a major concern in tokamaks. Although significant theoretical development had been undertaken in recent decades, we still lack a self-consistent simulator that could simultaneously capture all aspects of this phenomenon. The European framework for Integrated Modelling (EU-IM) facilitates the integration of different plasma simulation tools by providing a standard data structure for communication that enables relatively easy integration of different physics codes. A three-level modelling approach was adopted for runaway electron simulations within the EU-IM. Recently, a number of runaway electron modelling modules have been integrated into this framework. The first level of modelling (Runaway Indicator) is limited to the indication if runaway electron generation is possible or likely. The second level (Runaway Fluid) adopts an approach similar to e.g. the GO code, using analytical formulas to estimate changes in the runaway electron current density. The third level is based on the solution of the electron kinetics. One such code is LUKE that can handle the toroidicity-induced effects by solving the bounce-averaged Fokker-Planck equation. Another approach is used in NORSE, which features a fully nonlinear collision operator that makes it capable of simulating major changes in the electron distribution, for example slide-away. Both codes handle the effect of radiation on the runaway distribution. These runaway-electron modelling codes are in different stages of integration into the EU-IM infrastructure, and into the European Transport Simulator (ETS), which is a fully capable modular 1.5D core transport simulator. The ETS with Runaway Fluid was benchmarked to the GO code implementing similar physics. Coherent integration of kinetic solvers requires more effort on the coupling, especially regarding the definition of the boundary between runaway and thermal populations, and on consistent calculation of resistivity. Some of these issues are discussed.
机译:相对论的失控电子是托卡马克中的主要关注点。尽管近几十年来进行了重要的理论开发,但我们仍然缺乏能够同时捕获此现象各个方面的自洽模拟器。欧洲集成建模框架(EU-IM)通过提供用于通信的标准数据结构来促进不同等离子体模拟工具的集成,从而使不同物理学代码的集成相对容易。在EU-IM内对失控电子仿真采用了三级建模方法。最近,许多失控的电子建模模块已集成到此框架中。建模的第一级(失控指示器)仅限于是否可能或可能产生失控电子的指示。第二级(逃逸流体)采用类似于例如GO代码,使用分析公式估算失控电子电流密度的变化。第三级基于电子动力学的解。 LUKE就是这样一种代码,它可以通过求解反弹平均的Fokker-Planck方程来处理由圆弧引起的效应。 NORSE中使用了另一种方法,该方法具有完全非线性的碰撞算子,使其能够模拟电子分布的主要变化,例如滑落。两种代码都处理辐射对失控分布的影响。这些失控的电子建模代码处于集成到EU-IM基础结构和集成到功能齐全的模块化1.5D核心运输模拟器的欧洲运输模拟器(ETS)的不同阶段。具有逃逸流体的ETS被基准测试为实现类似物理的GO代码。动力学求解器的相干集成需要在耦合上付出更多的努力,尤其是在定义失控和热种群之间的边界以及一致地计算电阻率方面。讨论了其中一些问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号