首页> 外文期刊>Nuclear fusion >Modelling of JET hybrid plasmas with emphasis on performance of combined ICRF and NBI heating
【24h】

Modelling of JET hybrid plasmas with emphasis on performance of combined ICRF and NBI heating

机译:对JET混合等离子体进行建模,重点是结合ICRF和NBI加热的性能

获取原文
获取原文并翻译 | 示例
       

摘要

During the 2015-2016 JET campaigns, many efforts have been devoted to the exploration of high-performance plasma scenarios envisaged for DT operation in JET. In this paper, we review various key recent hybrid discharges and model the combined ICRF+NBI heating. These deuterium discharges with deuterium beams had the ICRF antenna frequency tuned to match the cyclotron frequency of minority H at the centre of the tokamak coinciding with the second harmonic cyclotron resonance of D. The modelling takes into account the synergy between ICRF and NBI heating through the second harmonic cyclotron resonance of D beam ions, allowing us to assess its impact on the neutron rate R_(NT). For discharges carried out with a fixed ICRF antenna frequency and changing toroidal magnetic field to vary the resonance position, we evaluate the influence of the resonance position on the heating performance and central impurity control. The H concentration is varied between discharges in order to test its role in the heating performance. It is found that discharges with a resonance beyond ~0.15 m from the magnetic axis R_0 suffer from MHD activity and impurity accumulation in these plasma conditions. According to our modelling, the ICRF enhancement of R_(NT) increases with the ICRF power absorbed by deuterons as the H concentration decreases. We find that in the recent hybrid discharges, this ICRF enhancement varies due to a variation of H concentration and is in the range of 10%-25%. The modelling of a recent record high-performance hybrid discharge shows that ICRF fusion yield enhancement of ~30% and ~15% respectively can be achieved in the ramp-up phase and during the main heating phase. We extrapolate the results to DT and find that the best performing hybrid discharges correspond to an equivalent fusion power of ~7.0 MW in DT. Finally, an optimization analysis of the bulk ion heating for the DT scenario reveals around 15%-20% larger bulk ion heating for the ~3He minority scenario as compared to the H minority scenario.
机译:在2015年至2016年的JET活动期间,为探索JET的DT操作设想的高性能等离子场景,人们进行了许多努力。在本文中,我们回顾了近期各种关键的混合放电,并对ICRF + NBI组合加热进行了建模。通过氘束对这些氘进行放电,将ICRF天线频率调整为与托卡马克中心少数H的回旋加速器频率相匹配,这与D的二次谐波回旋共振相吻合。建模考虑了ICRF和通过NBI加热的NBI之间的协同作用。 D离子的二次谐波回旋加速器共振,使我们能够评估其对中子速率R_(NT)的影响。对于使用固定ICRF天线频率和改变环形磁场以改变谐振位置进行的放电,我们评估了谐振位置对加热性能和中央杂质控制的影响。为了检测其在加热性能中的作用,在两次放电之间会改变H的浓度。研究发现,在这些等离子体条件下,从磁轴R_0起共振超过〜0.15 m的放电会遭受MHD活性和杂质累积。根据我们的模型,随着氢浓度的降低,R_(NT)的ICRF增强随着氘核吸收的ICRF功率的增加而增加。我们发现,在最近的混合放电中,由于H浓度的变化,这种ICRF增强也有所不同,并且在10%-25%的范围内。最近记录的高性能混合放电的模型表明,在加速阶段和主加热阶段,ICRF聚变产量可分别提高约30%和约15%。我们将结果外推至DT,发现性能最佳的混合放电对应于DT中约7.0 MW的等效聚变功率。最后,针对DT方案的体离子加热的优化分析显示,与3 H少数方案相比,〜3He少数方案的整体离子加热大15%-20%。

著录项

  • 来源
    《Nuclear fusion》 |2018年第10期|106037.1-106037.17|共17页
  • 作者单位

    Barcelona Supercomputing Center (BSC), Barcelona, Spain;

    Barcelona Supercomputing Center (BSC), Barcelona, Spain,ICREA, Barcelona, Spain;

    CCFE, Culham Science Centre, Abingdon, Oxon, OX14 3DB, United Kingdom of Great Britain;

    Associazione EURATOM-ENEA, C.R.E. Frascati, Italy;

    Centre de Recherches en Physique des Plasmas, EPFL, 1015, Lausanne, Switzerland;

    Max-Planck-Institut fur Plasmaphysik, Garching, Germany;

    CCFE, Culham Science Centre, Abingdon, Oxon, OX14 3DB, United Kingdom of Great Britain;

    Institute of Plasma Physics and Laser Microfusion, Association EURATOM/IPPLM, Warsaw, Poland;

    Uppsala University, Euratom/VR Fusion Assoc., Uppsala, Sweden;

    CEA, Centre d'Etudes Nucleaires de Cadarache, Cadarache, France;

    CEA, Centre d'Etudes Nucleaires de Cadarache, Cadarache, France;

    Uppsala University, Euratom/VR Fusion Assoc., Uppsala, Sweden;

    Max-Planck-Institut fur Plasmaphysik, Garching, Germany;

    CCFE, Culham Science Centre, Abingdon, Oxon, OX14 3DB, United Kingdom of Great Britain;

    CEA, Centre d'Etudes Nucleaires de Cadarache, Cadarache, France;

    Institute of Plasma Physics and Laser Microfusion, Association EURATOM/IPPLM, Warsaw, Poland;

    CCFE, Culham Science Centre, Abingdon, Oxon, OX14 3DB, United Kingdom of Great Britain;

    European Comission, B-1049 Brussels, Belgium;

    Laboratory for Plasma Physics, LPP-ERM/KMS, Brussels, Belgium;

    Institute of Physics, Opole University, ul. Oleska 48, Opole 45-052, Poland;

    Barcelona Supercomputing Center (BSC), Barcelona, Spain;

    Max-Planck-Institut fur Plasmaphysik, Garching, Germany;

    Max-Planck-Institut fur Plasmaphysik, Garching, Germany;

    Association EURATOM-CIEMAT para Fusion, CIEMAT, Madrid, Spain;

    FOM institute DIFFER, Association EURATOM-FOM, PO Box 120, Nieuwegein, Netherlands;

    Uppsala University, Euratom/VR Fusion Assoc., Uppsala, Sweden;

    Consorzio RFX, Associazione Euratom-ENEA sulla Fusione, Padova 35137, Italy;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    ICRF heating; NBI heating; JET hybrid plasmas; fusion enhancement;

    机译:ICRF加热;NBI加热;JET混合等离子体;融合增强;
  • 入库时间 2022-08-18 04:06:31

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号