首页> 外文期刊>Nuclear fusion >Electron acceleration in a JET disruption simulation
【24h】

Electron acceleration in a JET disruption simulation

机译:JET中断模拟中的电子加速

获取原文
获取原文并翻译 | 示例
       

摘要

Runaways are suprathermal electrons having sufficiently high energy to be continuously accelerated up to tens of MeV by a driving electric field (Connor and Hastie 1975 Nucl. Fusion 15 415). Highly energetic runaway electron (RE) beams capable of damaging the tokamak first wall can be observed after a plasma disruption (Reux et al 2015 Nucl. Fusion 55 129501). Therefore, it is of primary importance to fully understand their generation mechanisms in order to design mitigation systems able to guarantee safe tokamak operations. In a previous work, Sommariva et al (2018 Nucl. Fusion 58), a test particle tracker was introduced in the JOREK 3D non-linear MHD code and used for studying the electron confinement during a simulated JET-like disruption. It was found in Sommariva et al (2018 Nucl. Fusion 58) that relativistic electrons are not completely deconfined by the stochastic magnetic field taking place during the disruption thermal quench (TQ). This is due to the reformation of closed magnetic surfaces at the beginning of the current quench (CQ). This result was obtained neglecting the inductive electric field in order to avoid the unrealistic particle acceleration which otherwise would have happened due to the absence of collision effects. The present paper extends (Sommariva et al 2018 Nucl. Fusion 58) analysing test electron dynamics in the same simulated JET-like disruption using the complete electric field. For doing so, a simplified collision model is introduced in the particle tracker guiding center equations. We show that electrons at thermal energies can become RE during or promptly after the TQ due to a combination of three phenomena: a first REs acceleration during the TQ due to the presence of a complex MHD-induced electric field, particle reconfinement caused by the fast reformation of closed magnetic surfaces after the TQ and a secondary acceleration induced by the CQ electric field.
机译:失控是具有足够高能量的超热电子,可以通过驱动电场将其连续加速至数十MeV(Connor和Hastie 1975 Nucl。Fusion 15 415)。在等离子体破裂后,可以观察到能够破坏托卡马克第一壁的高能失控电子(RE)束(Reux等人,2015,Nucl。Fusion 55 129501)。因此,充分了解它们的生成机制以设计能够保证托卡马克安全运行的缓解系统至关重要。在之前的工作中,Sommariva等人(2018 Nucl.Fusion 58)在JOREK 3D非线性MHD代码中引入了一种测试粒子跟踪器,用于研究模拟的类似JET的破裂过程中的电子约束。在Sommariva等人(2018 Nucl.Fusion 58)中发现,相对论电子并没有完全被破坏热淬灭(TQ)期间发生的随机磁场所限制。这是由于在电流猝灭(CQ)开始时闭合的磁性表面的重新形成。忽略感应电场获得此结果是为了避免不现实的粒子加速,否则由于没有碰撞效应,粒子加速会发生。本文扩展了(Sommariva等人2018 Nucl.Fusion 58),使用完整的电场在相同的模拟JET样破坏中分析测试电子动力学。为此,在粒子跟踪器引导中心方程式中引入了简化的碰撞模型。我们显示,由于以下三种现象的结合,处于热能状态的电子可以在TQ期间或之后立即变为RE:由于存在复杂的MHD感应电场,TQ期间的第一RE加速,由快速运动引起的粒子重新约束TQ之后闭合磁表面的重新形成以及CQ电场引起的次级加速度。

著录项

  • 来源
    《Nuclear fusion》 |2018年第10期|106022.1-106022.15|共15页
  • 作者单位

    CEA, IRFM, F-13108, Saint Paul-lez-Durance, France,Ecole Polytechnique Federale de Lausanne (EPFL), Swiss Plasma Center (SPC), CH-1015, Lausanne, Switzerland;

    CEA, IRFM, F-13108, Saint Paul-lez-Durance, France;

    Aix-Marseille Universite, CNRS, PIIM UMR 7345, 13397, Marseille Cedex 20, France;

    Max Planck Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching b. M., Germany;

    CEA, IRFM, F-13108, Saint Paul-lez-Durance, France,Department of Applied Physics, T. U. Eindhoven, POB 513, 5600, Eindhoven, Netherlands;

    EUROfusion Consortium, JET, Culham Science Center, Abingdon, OX14 3DB, United Kingdom of Great Britain and Northern Ireland;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    runaway electrons; plasma disruptions; magnetohydrodynamics; electron acceleration; particle tracking;

    机译:电子失控血浆破坏;磁流体动力学;电子加速粒子追踪;
  • 入库时间 2022-08-18 04:06:30

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号