首页> 外文期刊>Nuclear fusion >Effect of strike point displacements on the ITER tungsten divertor heat loads
【24h】

Effect of strike point displacements on the ITER tungsten divertor heat loads

机译:冲击点位移对ITER钨分流器热负荷的影响

获取原文
获取原文并翻译 | 示例
           

摘要

The baseline ITER burning plasma equilibrium is designed to place the divertor strike points deep into the 'V-shaped' region formed by the high heat flux handling vertical targets (VT) and the reflector plates (RP). The divertor plasma performance under these conditions has been extensively studied in the past two decades with the SOLPS4.3 plasma boundary code suite. However, during tokamak operation, inaccuracies in the control of the vertical plasma position, or a requirement to avoid damaged monoblocks, could force the strike point position further down the VTs, or even directly on the RPs. In this paper, we present the results from the first SOLPS-ITER modelling in which the consequences of strike point displacements on the divertor plasma behaviour and surface heat loading are assessed. The starting point of the study is a baseline coupled fluid plasma-kinetic neutral solution (without fluid drifts), corresponding to an ITER burning plasma scenario at Q(DT) = 10 with neon seeding for detachment control, P-SOL = 100 MW, lambda(q) similar to 2mm and nominal strike point positions. From this baseline condition, the equilibrium is progressively moved downwards in a series of rigid displacements, obtaining new steady-state solutions, up to a maximum displacement of similar to 8cm, beyond which the separatrix is too close to the inner dome wing. At this point, the inner strike point is well onto the inner RP while the outer strike point is still on the VT. The different interaction of the recycled neutrals with the SOL plasma when the strike point intersects the inner RP, switching from vertical to horizontal target configuration, enhances the detachment degree at the inboard divertor, mitigating the heat load deposited onto the inner RP. At the outboard divertor the plasma condition is not significantly affected by the downward displacements, nor are the power fluxes to the outer RP Finally, the heat load profiles computed with SOLPS are used in input for a finite element thermal analysis, considering the full cooling geometry, to assess the response of the VTs and RPs under the conditions exploited in the displaced scenarios. This thermal model, based on a simplified treatment not requiring a full 3D description of the divertor monoblock plasma-facing units, constitutes a new module for the SOLPS-ITER code suite.
机译:基线ITER燃烧等离子体平衡旨在将偏滤器撞击点深置于由高热通量垂直靶(VT)和反射板(RP)形成的“ V形”区域。在过去的二十年中,使用SOLPS4.3等离子体边界代码套件对这些条件下的偏滤器等离子体性能进行了广泛的研究。但是,在托卡马克操作期间,垂直等离子位置控制的不精确性或避免损坏整体式模块的要求可能会迫使打击点位置进一步向下移动VT,甚至直接压在RP上。在本文中,我们介绍了第一个SOLPS-ITER模型的结果,其中评估了触头位移对偏滤器等离子体行为和表面热负荷的影响。这项研究的起点是基线耦合的流体等离子体动力学中性溶液(无流体漂移),对应于Q(DT)= 10的ITER燃烧等离子体场景,其中有氖离子注入用于分离控制,P-SOL = 100 MW, lambda(q)类似于2mm和标称触击点位置。从此基线状态开始,平衡以一系列刚性位移逐渐向下移动,从而获得新的稳态解,直到最大位移近似为8cm,在此之上,分离线与内穹顶翼太靠近了。此时,内部打击点位于内部RP上,而外部打击点仍位于VT上。当触击点与内部RP相交时,回收的中性粒子与SOL等离子体之间的不同相互作用(从垂直目标配置转换为水平目标配置)提高了内侧分流器处的脱离程度,从而减轻了沉积在内部RP上的热负荷。在外侧分流器处,等离子体条件不受向下位移的显着影响,至外部RP的功率通量也没有显着影响。最后,考虑到完整的冷却几何结构,将SOLPS计算的热负荷曲线用于有限元热分析的输入中,以评估在流离失所情况下利用的条件下VT和RP的响应。该热模型基于简化的处理,不需要对分流器整体式等离子面对单元进行完整的3D描述,构成了SOLPS-ITER代码套件的新模块。

著录项

  • 来源
    《Nuclear fusion》 |2018年第12期|126022.1-126022.21|共21页
  • 作者单位

    ITER Org, Route Vinon sur Verdon,CS 90 046, F-13067 St Paul Les Durance, France;

    Politecn Torino, Dipartimento Energia, NEMO Grp, Corso Duca Abruzzi 24, I-10129 Turin, Italy;

    Katholieke Univ Leuven, Dept Mech Engn, Celestijnenlaan 300, B-3001 Leuven, Belgium;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    ITER; divertor; power exhaust; detachment; SOLPS-ITER;

    机译:ITER;分流器;动力排气;分离;SOLPS-ITER;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号