首页> 外文期刊>Nuclear Engineering and Design >Identification of damping mechanism of TRR-II reactor control rod during free fall insertion
【24h】

Identification of damping mechanism of TRR-II reactor control rod during free fall insertion

机译:自由落体插入过程中TRR-II反应堆控制杆阻尼机理的识别

获取原文
获取原文并翻译 | 示例
       

摘要

In light water reactors, control rods are in general inserted into reactors by gravity. In order to achieve a rapid shutdown, it is required to insert control rods as fast as possible. On the other hand, a control rod with a fast falling velocity would impose a substantial impact to reactor structure as well as to the rod itself. Therefore, a damping force must come into effect, especially during the final stage of the free fall of the control rod. The purpose of this study is to develop a mathematical model and a numerical simulation to describe and identify the damping mechanism; and apply this model to the design of the control rod used in TRR-II reactor of the Institute of Nuclear Energy Research (INER) of Taiwan. The damping effect of a falling control rod comes from two factors: the viscous shear stress occurred in a narrow gap between the rod and an outer tube which confines the lateral movement of the rod, and the pressure force exerted on the rod by the compressed water under the rod. The viscous shear stress can be analyzed by assuming a couette flow between the rod and the outer tube similar to the viscous force occurred in rheology. In doing this, the flow rate in each flow path is closely related to the pressure gradient in the flow path and can be evaluated using an electrical circuit analogy. The results of the code prediction were compared to the experimental results as carried out by the INER. Finally, a parametric study was applied to estimate the effects of the various factors including gap thickness, size of the flow holes, and other geometric considerations on the rod falling velocity. The results of this study can serve some technical support during the stage of rod design and manufacture.
机译:在轻水反应堆中,控制杆通常通过重力插入反应堆中。为了实现快速停机,需要尽可能快地插入控制杆。另一方面,具有快速下降速度的控制杆将对反应器结构以及杆本身产生重大影响。因此,阻尼力必须生效,特别是在控制杆自由落下的最后阶段。本研究的目的是建立一个数学模型和一个数值模拟来描述和识别阻尼机制。并将该模型应用于台湾核能研究所(INER)TRR-II反应堆的控制棒设计。下降的控制杆的阻尼作用来自两个因素:粘性剪切应力发生在控制杆和限制管子横向运动的外管之间的狭窄缝隙中,以及压缩水施加在控制板上的压力在杆下。可以通过假设杆和外管之间的couette流类似于流变学中发生的粘性力来分析粘性剪切应力。这样,每个流道中的流速与流道中的压力梯度密切相关,并且可以使用电路模拟法进行评估。将代码预测的结果与INER进行的实验结果进行比较。最后,进行了参数研究,以估计各种因素的影响,包括间隙厚度,流孔的大小以及其他几何因素对杆下降速度的影响。这项研究的结果可以为杆的设计和制造阶段提供一些技术支持。

著录项

  • 来源
    《Nuclear Engineering and Design》 |2003年第3期|p.243-254|共12页
  • 作者单位

    Department of Mechanical Engineering, J-Shou University, Kaohsiung, Taiwan, ROC;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 原子能技术;
  • 关键词

  • 入库时间 2022-08-18 00:49:06

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号