首页> 外文期刊>Nuclear Engineering and Design >Novel porous media formulation for multiphase flow conservation equations
【24h】

Novel porous media formulation for multiphase flow conservation equations

机译:用于多相流守恒方程的新型多孔介质配方

获取原文
获取原文并翻译 | 示例
           

摘要

Multiphase flows consist of interacting phases that are dispersed randomly in space and in time. An additional complication arises from the fact that the flow region of interest often contains irregularly shaped structures. While, in principle, the intraphase conservation equations for mass, momentum, and energy, and their initial and boundary conditions can be written, the cost of detailed fluid flow and heat transfer analysis with explicit treatment of these internal structures with complex geometry and irregular shape often is prohibitive, if not impossible. In most engineering applications, all that is required is to capture the essential features of the system and to express the flow and temperature field in terms of local volume-averaged quantities while sacrificing some of the details. The present study is an attempt to achieve this goal by applying time averaging after local volume averaging. Local volume averaging of conservation equations of mass, momentum, and energy for a multiphase system yields equations in terms of local volume-averaged products of density, velocity, energy, stresses, and field forces, together with interface transfer integrals. These averaging relations are subject to the following length scale restrictions: d l L, where d is a characteristic length of the pores or dispersed phases, l a characteristic length of the averaging volume, and L is a characteristic length of the physical system. Solutions of local volume-averaged conservation equations call for expressing these local volume-averaged products in terms of products of averages. In nonturbulent flows, this can be achieved by expressing the "point" variable as the sum of its intrinsic volume average and a spatial deviation. In turbulent flows, the same can be achieved via subsequent time averaging over a duration T such that τ_(HF) T τ_(LF), where τ_(HF) is a characteristic time of high-frequency fluctuation and τ_(LF) is a characteristic time of low-frequency fluctuation. In this case, and instantaneous "point" variable ψ_k of phase k is decomposed into a low-frequency component ψ_(kLF) and a high-frequency component ψ′_k, similar to Reynolds analysis of turbulent flow. The low-frequency component consists of the sum of the local intrinsic volume average ~(3i) < ψ_k >_ (LF) and its local spatial deviation ψ_(kLF) Time averaging then reduces the volume-averaged products to products of averages plus terms representing eddy and dispersive diffusivities of mass, Reynolds and dispersive stresses, and eddy and dispersive conductivities of heat, etc.
机译:多相流由相互作用的相组成,这些相在时间和空间上随机分布。由于感兴趣的流动区域通常包含不规则形状的结构,因此引起了另外的复杂化。原则上,可以写出质量,动量和能量的内相守恒方程,以及它们的初始和边界条件,而详细处理这些具有复杂几何形状和不规则形状的内部结构的详细流体流动和传热分析的成本如果不是不可能的话,通常是禁止的。在大多数工程应用中,所需要做的只是捕捉系统的基本特征,并以局部体积平均量表示流量和温度场,同时牺牲一些细节。本研究是通过在局部体积平均后应用时间平均来实现此目标的尝试。对于多相系统,质量,动量和能量守恒方程的局部体积平均得出了密度,速度,能量,应力和场力的局部体积平均乘积以及界面传递积分的方程。这些平均关系受以下长度尺度限制:d l L,其中d是孔或分散相的特征长度,la是平均体积的特征长度,L是物理量的特征长度系统。局部体积平均守恒方程的解要求用平均值乘积来表示这些局部体积平均积。在非湍流中,这可以通过将“点”变量表示为其内在体积平均值和空间偏差之和来实现。在湍流中,可以通过在持续时间T上进行后续时间平均来实现相同效果,从而使τ_(HF) T τ_(LF),其中τ_(HF)是高频波动的特征时间,τ_( LF)是低频波动的特征时间。在这种情况下,类似于湍流的雷诺分析,相位k的瞬时“点”变量ψ_k被分解为低频分量ψ_(kLF)和高频分量ψ'_k。低频分量由局部固有体积平均值〜(3i)<ψ_k> _(LF)和其局部空间偏差ψ_(kLF)的总和组成。时间平均后将体积平均乘积减小为平均值加项的乘积表示质量的涡旋和弥散扩散率,雷诺和弥散应力,以及热的涡旋和弥散传导率等。

著录项

  • 来源
    《Nuclear Engineering and Design》 |2007年第9期|p.918-942|共25页
  • 作者

    W. T. Sha; B. T. Chao;

  • 作者单位

    Multiphase Flow Research Institute, Argonne National Laboratory, Argonne, IL 60439, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 原子能技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号