首页> 外文期刊>Nuclear Engineering and Design >Mesh Generation Technology For Nuclear Reactor Simulation; Barriers And Opportunities
【24h】

Mesh Generation Technology For Nuclear Reactor Simulation; Barriers And Opportunities

机译:用于核反应堆仿真的网格生成技术;障碍与机遇

获取原文
获取原文并翻译 | 示例
       

摘要

Mesh generation in support of nuclear reactor simulation has much in common with the requirements of other application areas, such as computational fluid dynamics (CFD). Indeed, fluid dynamics analysis of the coolant behavior inside the reactor core is an internal flow problem that requires the resolution of spatial and temporal variations in the flow caused by complex component configurations, fluids/structure interaction, turbulence, and thermal heating of the coolant. Typical concerns of meshing complex geometries; the use of hexahedral vs. tetrahedral elements, element geometric quality, mesh smoothness, use of anisotropic elements in the thermal boundary layer, etc., are all considerations important to the reactor meshing problem. Reactor meshing begins to become more specialized as the need to employ reactor simulation as a predictive design and safety analysis capability grows in importance. First, a predictive capability will require more precise physical models to be included, and these models will need to be supported by a computational science framework that will allow them to be accurately approximated both spatially and temporally during the reactor core analysis. Both the multiphysical nature of the composite reactor model and details of the physics algorithms themselves will place new requirements on the meshing process needed to support multidimensional reactor simulation. This article discusses the current state of meshing technology applied to reactor simulation and examines a set of issues that are important in the generation of high-quality reactor meshes today and in the future.
机译:支持核反应堆仿真的网格生成与其他应用领域(例如计算流体力学(CFD))的要求有很多共通之处。实际上,对反应堆堆芯内部冷却剂行为的流体动力学分析是一个内部流动问题,需要解决由于复杂的组件配置,流体/结构相互作用,湍流和冷却剂的热加热引起的流动的空间和时间变化。复杂几何形状啮合的典型问题;六面体与四面体元素的使用,元素的几何质量,网格平滑度,在热边界层中使用各向异性元素等,都是对反应器啮合问题很重要的考虑因素。随着将反应堆仿真作为预测设计和安全分析能力的需求日益重要,反应堆啮合开始变得更加专业。首先,预测能力将需要包括更精确的物理模型,并且这些模型将需要计算科学框架的支持,这将使它们在反应堆堆芯分析过程中在空间和时间上都能准确地近似。复合反应堆模型的多物理性质和物理算法本身的细节都将对支持多维反应堆模拟所需的啮合过程提出新的要求。本文讨论了应用于反应堆仿真的网格技术的现状,并研究了在当今和将来生成高质量反应堆网格时非常重要的一系列问题。

著录项

  • 来源
    《Nuclear Engineering and Design》 |2008年第10期|p.2590-2605|共16页
  • 作者

    Glen Hansen; Steve Owen;

  • 作者单位

    Multiphysics Methods Group, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 原子能技术;
  • 关键词

  • 入库时间 2022-08-18 00:45:40

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号