首页> 外文期刊>Nuclear Engineering and Design >A domain decomposition methodology for pin by pin coupled neutronic and thermal-hydraulic analyses in COBAYA3
【24h】

A domain decomposition methodology for pin by pin coupled neutronic and thermal-hydraulic analyses in COBAYA3

机译:COBAYA3中针脚耦合中子和热工水力分析的域分解方法

获取原文
获取原文并翻译 | 示例
       

摘要

Nowadays, coupled 3D neutron-kinetics and thermal-hydraulic core calculations are performed by applying a radial average channel approach using a meshing of one quarter of assembly in the best case. This approach does not take into account the subchannels effects due to the averaging of the physical fields and the loose of heterogeneity in the thermal-hydraulic modelization. Therefore the models do not have enough resolution to predict those subchannels effects which are important for the fuel design safety margins, because it is in the local scale, where we can search the hottest pellet or the maximum heat flux. The aim of this paper is to present a domain decomposition methodology as our choice to asses this multi-scale issue in order to correct the results at the core scale with the ones from the subchannel scale.rnThe UPM advanced multi-scale neutron-kinetics and thermal-hydraulics methodologies being implemented in COBAYA3 include domain decomposition by alternate core dissections for the local 3D fine-mesh scale problems (pin cells/subchannels) and an analytical nodal diffusion solver for the coarse mesh scale coupled with the thermal-hydraulic using a modelization of one channel per assembly or per quarter of assembly.rnThe multi-scale domain decomposition is optimal for the thermal-hydraulic calculations, where the neutronic nodes (assemblies or quarters) can be mapped one-to-one to average channels and fuel rods and the pin cells to the detailed fuel pins and subchannels. For both levels we use the same channel code and, in order to facilitate the multi-scale mesh definition for the TH modules, the development of an input pre-processor has been a relevant part of this work.
机译:如今,在最佳情况下,通过应用径向平均通道方法,并使用四分之一组件的啮合,可以执行3D中子动力学和热工水力耦合计算。这种方法没有考虑由于热物理模型中物理场的平均化和非均质性的松散导致的子通道效应。因此,这些模型没有足够的分辨率来预测那些对燃料设计安全裕度很重要的子通道效应,因为它在局部范围内,我们可以在其中搜索最热的颗粒或最大热通量。本文的目的是提出一种域分解方法作为我们选择该多尺度问题的选择,以便用子通道尺度的结果校正核心尺度的结果。芬欧汇川先进的多尺度中子动力学和在COBAYA3中实施的热工液压方法学包括:通过局部3D细网尺度问题(钉单元/子通道)的交替核心剖分进行域分解,以及用于粗网尺度与热工液压耦合的解析节点扩散求解器(通过建模)每个组件或每个组件的四分之一通道。rn多尺度域分解是热工水力计算的最佳选择,其中中子节点(组件或四分之一)可以一对一映射到平均通道和燃料棒,将针脚单元连接到详细的燃料针脚和子通道。对于两个级别,我们都使用相同的通道代码,并且为了简化TH模块的多尺度网格定义,输入预处理器的开发已成为这项工作的重要部分。

著录项

  • 来源
    《Nuclear Engineering and Design》 |2010年第2期|313-320|共8页
  • 作者单位

    Department of Nuclear Engineering, Universidad Politecnica de Madrid (UPM), C/Jose Gutierrez Abascal, 2,28006 Madrid, Spain;

    Department of Nuclear Engineering, Universidad Politecnica de Madrid (UPM), C/Jose Gutierrez Abascal, 2,28006 Madrid, Spain;

    Department of Nuclear Engineering, Universidad Politecnica de Madrid (UPM), C/Jose Gutierrez Abascal, 2,28006 Madrid, Spain;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 00:44:54

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号