首页> 外文期刊>Nuclear Engineering and Design >A new method to predict Grid-To-Rod Fretting in a PWR fuel assembly inlet region
【24h】

A new method to predict Grid-To-Rod Fretting in a PWR fuel assembly inlet region

机译:预测压水堆燃料组件进气口区域栅网微动的新方法

获取原文
获取原文并翻译 | 示例
       

摘要

Grid-To-Rod Fretting (GTRF) is one of the main causes of leaking fuel in a Pressurized Water Reactor (PWR). GTRF is caused by grid-to-rod gap, secondary flow, and axial/lateral turbulence caused pressure fluctuations within the fuel assembly, which produces rod vibration and wear. The cross flow and vortex shedding phenomenon produce low frequency vibration forces on fuel rods. In some plants, leaking fuel has been detected at the fuel inlet region of fuel assembly designs that do not have Protective Grid (P-grid) which, in addition to providing debris protection, also provides lateral stability against vibration. In order to understand the root cause of the fuel leaks, a thorough investigation of the flow field at the fuel inlet region is required. Leaking fuel has also been detected in the fuel inlet region in transition cores. In the transitional core arrangement, there are different fuel assembly designs next to each other. Due to the structure difference, there will be cross flow between fuel assemblies, which may be the initiating factor for fuel leaks. A method based on Computational Fluid Dynamics (CFD) has been developed in Westinghouse to predict the GTRF in the fuel inlet region. The fuel inlet region consists of the lower core plate, the bottom nozzle, the fuel rods, the thimble rods, the P-grid, and the bottom grid. This study employed CFD to investigate the unsteady forces on the fuel rods under typical reactor in-core conditions. Two fuel assembly (FA) inlet regions with and without the P-grid were simulated. The time history of the unsteady force components on fuel rods was recorded. Fast Fourier Transform (FFT) analyses were carried out for the force history. Compared to the data from operating plants, the new method predicted synchronized excitation forces on the rods that leaked in real operation. The CFD results also demonstrated the advantage of using the P-grid. GTRF at the fuel inlet region can be significantly reduced when the P-grid is used in Westinghouse fuel assembly designs.
机译:栅杆微动磨损(GTRF)是压水堆(PWR)中燃料泄漏的主要原因之一。 GTRF是由栅杆间隙,二次流以及轴向/横向湍流引起的燃料组件内的压力波动引起的,从而引起杆的振动和磨损。横流和涡旋脱落现象在燃料棒上产生低频振动力。在一些工厂中,在没有保护栅(P型栅)的燃料组件设计的燃料入口区域检测到泄漏的燃料,该保护栅除了提供碎屑保护外,还提供了抗振动的横向稳定性。为了了解燃油泄漏的根本原因,需要对燃油进口区域的流场进行彻底调查。在过渡堆芯的燃油入口区域也检测到燃油泄漏。在过渡堆芯布置中,有彼此相邻的不同燃料组件设计。由于结构差异,燃料组件之间会产生交叉流,这可能是燃料泄漏的起因。西屋公司已经开发出一种基于计算流体动力学(CFD)的方法来预测燃料入口区域的GTRF。燃油入口区域由下芯板,底部喷嘴,燃油杆,顶针杆,P型格栅和底部格栅组成。这项研究使用CFD研究典型反应堆堆芯条件下燃料棒上的不稳定力。模拟了带有和不带有P网格的两个燃料组件(FA)入口区域。记录了燃料棒上非定常力分量的时间历史。对力历史进行了快速傅里叶变换(FFT)分析。与来自运营工厂的数据相比,该新方法可以预测实际运行中泄漏的杆上的同步激励力。 CFD结果还证明了使用P型电网的优势。当在Westinghouse燃料组件设计中使用P型电网时,可以显着减少燃料入口区域的GTRF。

著录项

  • 来源
    《Nuclear Engineering and Design》 |2011年第8期|p.2974-2982|共9页
  • 作者单位

    Westinghouse Electric Company LLC;

    5801 Bluff Road, Columbia, SC 29209, United States;

    Westinghouse Electric Company LLC;

    5801 Bluff Road, Columbia, SC 29209, United States;

    Westinghouse Electric Company LLC5801 Bluff Road, Columbia, SC 29209, United StatesWestinghouse Electric Company LLC 8801 Bluff Road, Columbia, SC 29209, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 00:44:39

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号