首页> 外文期刊>Nuclear Engineering and Design >The segmented expanding cone-mandrel test revisited as material characterization and component test for fuel claddings
【24h】

The segmented expanding cone-mandrel test revisited as material characterization and component test for fuel claddings

机译:重新讨论了分段式膨胀锥心轴测试,作为燃料包壳的材料表征和组件测试

获取原文
获取原文并翻译 | 示例
       

摘要

This paper presents an assessment of the segmented expanding mandrel (SEM) test for material characterization and structural integrity assessment of nuclear fuel claddings. The loading is induced by expanding segments, which are placed inside a cladding tube, radially to simulate cracked fuel that expands thermally. Experimental results are presented for zircaloy-2 cladding tubes for different number of segments. The tests are analysed with semi-analytical models and two-dimensional finite element models. A complex stress field with stress concentrations occurs at the edge of the segments, which simulates pellet cladding interaction. The variation of the stresses and the strength of the stress and strain concentrations increases with fewer segments and increases strongly with higher friction coefficient between segments and the cladding tube. By increasing the number of segments and ensuring a low friction coefficient, the deformation is close to axi-symmetric and the SEM can be used to determine qualitatively the material properties such as fracture criteria and stress-strain curves, but the test is more appropriate for assessment of how defects and microstructure affect ductility. For simulation of mechanical pellet-cladding interaction it is important that the friction coefficient is representative. The resulting stress concentrations promote failure at lower loads and need to be taken into account for the integrity assessment. The SEM test can then be used as a relatively simple test for assessment of pellet fuel cladding interaction.
机译:本文介绍了分段膨胀心轴(SEM)测试的评估,以用于核燃料包壳的材料表征和结构完整性评估。载荷是由膨胀段引起的,这些膨胀段径向放置在包层管内,以模拟裂解燃料的热膨胀。给出了不同数量段的Zircaloy-2覆层管的实验结果。使用半分析模型和二维有限元模型对测试进行了分析。具有应力集中的复杂应力场出现在段的边缘,这模拟了丸粒熔覆相互作用。应力的变化以及应力和应变集中强度的强度随着段的减少而增加,并且随着段与包层管之间的摩擦系数增加而强烈增加。通过增加段数并确保低摩擦系数,变形接近轴对称,并且SEM可用于定性确定材料性能,例如断裂准则和应力-应变曲线,但该测试更适合评估缺陷和微观结构如何影响延展性。为了模拟机械丸粒-包层相互作用,重要的是摩擦系数具有代表性。由此产生的应力集中会在较低负载下促进失效,因此完整性评估需要考虑到这一点。然后,SEM测试可以用作评估颗粒燃料包层相互作用的相对简单的测试。

著录项

  • 来源
    《Nuclear Engineering and Design》 |2011年第2期|p.445-458|共14页
  • 作者单位

    Institute for Energy, DC-JRC, European Commission, Netherlands;

    Institute for Energy, DC-JRC, European Commission, Netherlands;

    Institute for Energy, DC-JRC, European Commission, Netherlands;

    Institute for Energy, DC-JRC, European Commission, Netherlands;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 00:44:31

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号