...
首页> 外文期刊>Nuclear Engineering and Design >The role of CFD combustion modeling in hydrogen safety management-II: Validation based on homogeneous hydrogen-air experiments
【24h】

The role of CFD combustion modeling in hydrogen safety management-II: Validation based on homogeneous hydrogen-air experiments

机译:CFD燃烧建模在氢安全管理中的作用-II:基于均质氢-空气实验的验证

获取原文
获取原文并翻译 | 示例

摘要

During a severe accident in a PWR, large quantities of hydrogen can be generated and released into the containment. The generated hydrogen, when mixed with air, can lead to hydrogen combustion. The dynamic pressure loads resulting from hydrogen combustion can be detrimental to the structural integrity of the reactor safety systems and the reactor containment. Therefore, accurate prediction of these pressure loads is an important safety issue. In a previous article, we presented a CFD based method to determine these pressure loads. This CFD method is based on the application of a turbulent flame speed closure combustion model. The validation analyses in our previous paper demonstrated that it is of utmost importance to apply successive mesh and time step refinement in order to get reliable results. In this article, we first determined to what extent the required computational effort required for our CFD approach can be reduced by the application of adaptive mesh refinement, while maintaining the accuracy requirements. Experiments performed within a small fan stirred explosion bomb were used for this purpose. It could be concluded that adaptive grid adaptation is a reliable and efficient method for usage in hydrogen deflagration analyses. For the two-dimensional validation analyses, the application of dynamic grid adaptation resulted in a reduction of the required computational effort by about one order of magnitude. In a second step, the considered CFD approach including adaptive mesh refinement has been further validated against three hydrogen deflagration experiments performed in the ENACCEF facility. For each test, mesh and time step sensitivity analyses have been performed. From the presented validation analyses, it could be concluded that the maximum pressures were predicted within 13% accuracy, while the rate of pressure rise dp/dt was predicted within about 30%. The eigen-frequencies of the residual pressure wave phenomena were predicted within a few %. Therefore, it was overall concluded that the current model predicts the considered ENACCEF experiments very well.
机译:在压水堆发生严重事故期间,会产生大量氢气并将其释放到安全壳中。生成的氢气与空气混合时会导致氢气燃烧。由氢燃烧产生的动态压力载荷可能不利于反应堆安全系统和反应堆安全壳的结构完整性。因此,准确预测这些压力负荷是重要的安全问题。在上一篇文章中,我们介绍了一种基于CFD的方法来确定这些压力负载。此CFD方法基于湍流火焰速度闭合燃烧模型的应用。我们先前论文中的验证分析表明,为了获得可靠的结果,应用连续的网格和时间步细化至关重要。在本文中,我们首先确定了在保持精度要求的同时,通过应用自适应网格细化可以将CFD方法所需的计算量减少到何种程度。为此目的,在小型风扇搅拌式炸弹内进行的实验被使用。可以得出结论,自适应电网自适应是用于氢爆燃分析的可靠而有效的方法。对于二维验证分析,动态网格自适应的应用导致所需的计算工作量减少了大约一个数量级。在第二步中,针对ENACCEF设施中进行的三个氢爆燃实验,进一步验证了包括自适应网格细化在内的CFD方法。对于每个测试,已经执行了网格和时间步灵敏度分析。从提出的验证分析中可以得出结论,最大压力的预测精度在13%以内,而压力上升率dp / dt的预测值在30%以内。残余压力波现象的本征频率在百分之几以内。因此,总的来说,当前模型可以很好地预测所考虑的ENACCEF实验。

著录项

  • 来源
    《Nuclear Engineering and Design 》 |2012年第11期| p.289-302| 共14页
  • 作者单位

    Nuclear Research and Consultancy Croup (NRG), Westerduinweg 3,1755 ZG Petten, The Netherlands;

    Nuclear Research and Consultancy Croup (NRG), Westerduinweg 3,1755 ZG Petten, The Netherlands;

    Nuclear Research and Consultancy Croup (NRG), Westerduinweg 3,1755 ZG Petten, The Netherlands;

    Department of Multi-Scale Physics, Delft University of Technology, P.O. Box 5,2600 AA Delft, The Netherlands;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号