首页> 外文期刊>Nuclear Engineering and Design >The effects of crossflow gap and axial bypass gap distribution on the flow characteristics in prismatic VHTR core
【24h】

The effects of crossflow gap and axial bypass gap distribution on the flow characteristics in prismatic VHTR core

机译:错流间隙和轴向旁通间隙分布对棱柱形VHTR铁心流动特性的影响

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

In prismatic VHTR design, the occurrence of the bypass gap between the core blocks is inevitable for installation and refueling. Since the core bypass flow affect both the reactor efficiency and core thermal margin, it is important to evaluate the bypass flow distribution accurately. The gap size varies with the reactor fuel cycle as the dimension of graphite block varies due to the fast-neutron induced shrinkage and thermal expansion. In particular, the dimensional change of graphite block is different from each location in the core, since the neutron fluence of the blocks is different locally. In addition, fuel and reflector blocks are rearranged by axial shuffling for refueling, so that bypass gap distribution is not axially uniform. Therefore, the consideration of axial profile of the bypass gap is important for accurate evaluation of bypass flow but most of the previous studies assumed uniform bypass gap size. In present study, the multi-block air test experiment was carried out to evaluate the bypass flow distribution with the consideration of axially varying bypass gap profile and the crossflow effect. Axial bypass gap profile of 6 mm, 2 mm, 4 mm, 2 mm from top to bottom layer and the crossflow gap of 2 mm were tested in the experiment. In addition, comparative computational fluid dynamics (CFDs) analysis for the multi-block experiment was carried out to supplement the experimental limit and to analyze the local flow characteristics in detail. The results suggest that the CFD code, CFX-12 has a sufficient capability to analyze the VHTR core and the prismatic VHTR core should be modeled as the flow network system. The experimental data and CFD simulation results could be used to validate the thermal-hydraulics system code for VHTR system.
机译:在棱柱形VHTR设计中,在安装和加油时不可避免地会在芯块之间出现旁路间隙。由于堆芯旁路流量会影响反应堆效率和堆芯热裕度,因此准确评估旁路流量分布非常重要。间隙尺寸随反应堆燃料循环而变化,这是由于快中子引起的收缩和热膨胀导致石墨块的尺寸变化。尤其是,石墨块的尺寸变化与堆芯中的每个位置都不同,这是因为石墨块的中子注量局部不同。另外,燃料和反射器块通过轴向改组进行重新布置以进行加油,从而旁路间隙分布在轴向上不均匀。因此,对旁路间隙的轴向轮廓的考虑对于准确评估旁路流量很重要,但是大多数先前的研究都假定旁路间隙尺寸均匀。在本研究中,进行了多段空气测试实验,以评估旁路流量分布,同时考虑了轴向变化的旁路间隙轮廓和错流效应。在实验中测试了从顶层到底层的6mm,2mm,4mm,2mm的轴向旁路间隙轮廓和2mm的错流间隙。此外,针对多块实验进行了比较计算流体动力学(CFD)分析,以补充实验极限并详细分析局部流动特性。结果表明,CFD代码CFX-12具有足够的能力来分析VHTR核心,应将棱柱形VHTR核心建模为流网络系统。实验数据和CFD仿真结果可用于验证VHTR系统的热工液压系统代码。

著录项

  • 来源
    《Nuclear Engineering and Design》 |2012年第9期|p.465-479|共15页
  • 作者单位

    Department of Nuclear Engineering, Seoul National University 130 dong, San 56-1, Daehak-dong, Kwanak-gu, Seoul 151-742, South Korea;

    Department of Nuclear Engineering, Seoul National University 130 dong, San 56-1, Daehak-dong, Kwanak-gu, Seoul 151-742, South Korea;

    Korea Atomic Energy Research Institute, 150-1 Deokjin-Dong, 1045 Daedeokdaero, Yuseong, Daejeon 305-353, South Korea;

    Department of Nuclear Engineering, Seoul National University 130 dong, San 56-1, Daehak-dong, Kwanak-gu, Seoul 151-742, South Korea;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号