...
首页> 外文期刊>Nuclear Engineering and Design >In-core power sharing and fuel requirement study for a decommissioning Boiling Water Reactor using the linear reactivity model
【24h】

In-core power sharing and fuel requirement study for a decommissioning Boiling Water Reactor using the linear reactivity model

机译:使用线性反应模型的退役沸水堆堆芯功率共享和燃料需求研究

获取原文
获取原文并翻译 | 示例
           

摘要

A study of in-core power sharing and fuel requirement for a decommissioning BWR (Boiling Water Reactor) was carried out using the linear reactivity model (LRM). The power sharing of each fuel batch was taken as an independent variable, and the related parameters were set and modified to simulate actual cases. Optimizations of the last cycle and two cycles before decommissioning were both implemented; in the last-one-cycle optimization, a single cycle optimization was carried out with different upper limits of fuel batch power, whereas, in the two-cycle optimization, two cycles were optimized with different cycle lengths, along with two different optimization approaches which are the simultaneous optimization of two cycles (MO) and two successive single-cycle optimizations (SO). The results of the last-one-cycle optimization show that it is better to increase the fresh fuel power and decrease the thrice-burnt fuel power as much as possible. It also shows that relaxing the power limit is good to the fresh fuel requirement which will be reduced under lower power limit. On the other hand, the results of the last-two-cycle (cycle N-1 and N) optimization show that the MO is better than SO, and the power of fresh fuel batch should be decreased in cycle N-1 to save its energy for the next cycle. The results of the single-cycle optimization are found to be the same as that in cycle N of the multi-cycle optimization. Besides that, under the same total energy requirement of two cycles, a long-short distribution of cycle length design can save more fresh fuel. (C) 2014 Elsevier B.V. All rights reserved.
机译:使用线性反应模型(LRM)对退役的BWR(沸水反应堆)的堆芯功率共享和燃料需求进行了研究。将每个燃料批次的功率分配作为一个独立变量,并设置和修改相关参数以模拟实际情况。最后一个循环和退役前两个循环的优化均已实现;在最后一个循环的优化中,使用不同的批燃料功率上限进行了一个循环的优化,而在两个循环的优化中,以不同的循环长度对两个循环进行了优化,并采用了两种不同的优化方法:是两个周期(MO)的同时优化和两个连续的单周期优化(SO)。最后一个周期的优化结果表明,最好增加新鲜燃料功率并尽可能减少三次燃烧燃料功率。这也表明放宽功率限制对新鲜燃料的需求是有利的,在较低的功率限制下将会减少。另一方面,最后两个循环(N-1和N循环)的优化结果表明,MO优于SO,并且应在N-1循环中降低新鲜燃料批的功率,以节省燃料消耗。下一个周期的能量。发现单循环优化的结果与多循环优化的循环N的结果相同。除此之外,在两个周期相同的总能量需求下,周期长度设计的长短分布可以节省更多的新鲜燃料。 (C)2014 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Nuclear Engineering and Design》 |2014年第8期|264-271|共8页
  • 作者单位

    Inst Nucl Energy Res, Nucl Engn Div, Longtan Township 32546, Taoyuan County, Taiwan;

    Inst Nucl Energy Res, Nucl Engn Div, Longtan Township 32546, Taoyuan County, Taiwan;

    Inst Nucl Energy Res, Nucl Engn Div, Longtan Township 32546, Taoyuan County, Taiwan;

    Inst Nucl Energy Res, Nucl Engn Div, Longtan Township 32546, Taoyuan County, Taiwan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号