首页> 外文期刊>Nuclear Engineering and Design >Linear and nonlinear analysis of an unstable, but well-posed, one-dimensional two-fluid model for two-phase flow based on the inviscid Kelvin-Helmholtz instability
【24h】

Linear and nonlinear analysis of an unstable, but well-posed, one-dimensional two-fluid model for two-phase flow based on the inviscid Kelvin-Helmholtz instability

机译:基于无形Kelvin-Helmholtz不稳定性的不稳定但位置良好的一维两相两相流模型的线性和非线性分析

获取原文
获取原文并翻译 | 示例
           

摘要

For nuclear reactor safety analysis, the one-dimensional two-fluid model equations are solved numerically with the first order upwind method because of its robust stability. In the present two-fluid model for horizontal stratified flow, surface tension is included because it makes the model well-posed. However, this is not done in industrial applications and numerical viscosity provides linear stabilization even when the model is ill-posed. It is now shown that numerical viscosity also provides nonlinear stabilization; meaning that the wave growth is bounded when the flow is unstable (e.g., in case of the Kelvin-Helmholtz instability). The formation of kinematic shocks in the presence of numerical viscosity provides the dissipation mechanism needed to stop the wave growth. However, numerical viscosity varies with the mesh size, which means that even though the unstable model is well-posed and meets von Neumann and nonlinear stabilization requirements, the solution does not converge for some short wavelengths greater than 2 Ax. Furthermore, when the mesh size is large, significant artificial viscosity is added to the continuity and momentum equations and the model may become over-stabilized. A more scientific approach is proposed: to add a physical dissipation mechanism instead of numerical viscosity, i.e., Reynolds stresses. This approach has two advantages: first, the one-dimensional two-fluid model converges under severe dynamic conditions, such as the Kelvin-Helmholtz instability, and second, a higher order numerical method may be used instead of the first order upwind scheme without experiencing numerical excursions.
机译:为了进行核反应堆安全性分析,由于一维上风方法具有鲁棒的稳定性,因此可以使用一阶迎风方法对其进行数值求解。在当前的水平分层流双流体模型中,包括了表面张力,因为它使模型具有良好的位置。但是,这在工业应用中并没有做到,即使模型处于不适状态,数值粘度也可以提供线性稳定性。现在表明,数值粘度还提供了非线性稳定度。这意味着当流动不稳定时(例如在开尔文-亥姆霍兹不稳定性的情况下),波的增长就受到限制。在存在数值粘度的情况下运动冲击的形成提供了阻止波增长所需的耗散机制。但是,数值粘度随网孔尺寸而变化,这意味着即使不稳定模型处于适当位置并满足冯·诺依曼和非线性稳定要求,对于某些大于2 Ax的短波长,解决方案也不会收敛。此外,当网格尺寸较大时,会在连续性和动量方程式中添加较大的人工粘度,并且模型可能变得过于稳定。提出了一种更科学的方法:添加物理耗散机制而不是数值粘度,即雷诺应力。这种方法有两个优点:首先,一维两流体模型在严峻的动态条件下收敛,例如开尔文-亥姆霍兹不稳定性;其次,可以使用高阶数值方法代替一阶迎风方案而不会遇到数值游览。

著录项

  • 来源
    《Nuclear Engineering and Design》 |2014年第3期|173-184|共12页
  • 作者单位

    School of Nuclear Engineering, Purdue University, 400 Central Drive, West Lafayette, IN 47907-2017, USA;

    School of Nuclear Engineering, Purdue University, 400 Central Drive, West Lafayette, IN 47907-2017, USA;

    School of Nuclear Engineering, Purdue University, 400 Central Drive, West Lafayette, IN 47907-2017, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号