首页> 外文期刊>Nuclear Engineering and Design >Large eddy simulation of particulate flow inside a differentially heated cavity
【24h】

Large eddy simulation of particulate flow inside a differentially heated cavity

机译:差热腔内颗粒流动的大涡模拟

获取原文
获取原文并翻译 | 示例
       

摘要

In nuclear safety, some severe accident scenarios lead to the presence of fission products in aerosol form in the closed containment atmosphere. It is important to understand the particle depletion process to estimate the risk of a release of radioactivity to the environment should a containment break occur. As a model for the containment, we use the three-dimensional differentially heated cavity problem. The differentially heated cavity is a cubical box with a hot wall and a cold wall on vertical opposite sides. On the other walls of the cube we have adiabatic boundary conditions. For the velocity field the no-slip boundary condition is applied. The flow of the air in the cavity is described by the Boussinesq equations. The method used to simulate the turbulent flow is the large eddy simulation (LES) where the dynamics of the large eddies is resolved by the computational grid and the small eddies are modelled by the introduction of subgrid scale quantities using a filter function. Particle trajectories are computed using the Lagrangian particle tracking method, including the relevant forces (drag, gravity, thermophoresis). Four different sets with each set containing one million particles and diameters of 10 μm, 15 μm, 25 μm and 35 μm are simulated. Simulation results for the flow field and particle sizes from 15 μm to 35 μm are compared to previous results from direct numerical simulation (DNS). The integration time of the LES is three times longer and the smallest particles have been simulated only in the LES. Particle statistics in the LES and the DNS were similar and the settling rates were practically identical. It was found that for this type of flow no model was necessary for the influence of the unresolved flow scales on the particle motions. This can be explained by the dominant nature of gravity settling compared to turbophoresis which is negligible for the particle sizes of the present study.
机译:在核安全中,某些严重事故情景导致在密闭安全壳大气中以气溶胶形式存在裂变产物。重要的是要了解粒子的耗尽过程,以估计在发生安全壳破裂时向环境释放放射性的风险。作为安全壳模型,我们使用三维差分加热空腔问题。差异加热腔是一个立方箱,在垂直的相对侧上有一个热壁和一个冷壁。在立方体的其他壁上,我们有绝热边界条件。对于速度场,应用无滑移边界条件。空气在空腔中的流动由Boussinesq方程描述。用于模拟湍流的方法是大涡模拟(LES),其中大涡的动力学由计算网格解决,而小涡则通过使用过滤函数引入亚网格规模来建模。使用拉格朗日粒子跟踪方法计算粒子轨迹,包括相关力(阻力,重力,热泳)。模拟了四个不同的集合,每个集合包含一百万个粒子,直径分别为10μm,15μm,25μm和35μm。将流场和粒径从15μm到35μm的模拟结果与直接数值模拟(DNS)的先前结果进行了比较。 LES的积分时间是其的三倍,并且仅在LES中模拟了最小的粒子。 LES和DNS中的粒子统计相似,沉降速率几乎相同。已经发现,对于这种类型的流动,没有模型对于未解决的流动尺度对粒子运动的影响是必要的。与重力电泳相比,重力沉降的主要性质可以解释,这对于本研究的颗粒尺寸可以忽略不计。

著录项

  • 来源
    《Nuclear Engineering and Design》 |2014年第2期|154-163|共10页
  • 作者单位

    Paul Scherrer Institut, Laboratory for Thermalhydraulics (LTH), 5232 Villigen PSI, Switzerland;

    Paul Scherrer Institut, Laboratory for Thermalhydraulics (LTH), 5232 Villigen PSI, Switzerland;

    Ecole Polytechnique Federals de Lausanne, STI-DO, Station 12, 1015 Lausanne, Switzerland;

    Universite de Lille Ⅰ, Laboratoire de Mecanique de Lille, Avenue Paul Langevin, Cite Scientifique, F-59655 Villeneuve d'Ascq Cedex, France;

    Dipartimento di Energetica e Macchine and Centra Interdipartimentale di Fluidodinamica e Idraulica, Universita degli Studi di Udine, Udine, Italy;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 00:42:59

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号