...
首页> 外文期刊>Nuclear Engineering and Design >Numerical analysis of air-foil shaped fin performance in printed circuit heat exchanger in a supercritical carbon dioxide power cycle
【24h】

Numerical analysis of air-foil shaped fin performance in printed circuit heat exchanger in a supercritical carbon dioxide power cycle

机译:超临界二氧化碳功率循环中印制电路换热器中翼型翅片性能的数值分析

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

One of the key issues of the PCHE technology in the supercritical CO2 Brayton cycle is to achieve an efficient and compact designs to be able to enhance heat transfer and reduce pressure drop. The issue is challenging due to the complex configuration of micro-channels in the PCHE. In this study, an innovative micro-channel equipped with an array of airfoil fins is analyzed to evaluate its performance. In so doing, sensitivity analysis with various design parameters is performed to configure the optimal arrangement of airfoil fins by using CFD analysis for Supercritical Carbon dioxide Integral Experimental Loop (SCIEL) in Korean Atomic Energy Research Institute (KAERI). Dominant geometric parameters of the fin arrangement that affects to the thermal and hydraulic performances are the horizontal, vertical and staggered pitches. ANSYS ICEM CFD and ANSYS CFX are used for the grid generation and the computational calculation. CO2 properties are used by using REFPROF software database. The inlet temperature of the hot side is 618 K and that of the cold side is 585 K. The reference mass flow rate is set as 1.2 g/s for the vertical number of 2.0, which is the Reynolds number of about 30,000. The mass flow rate changes from 0.4 to 4.8 g/s in order to investigate the Reynolds number effect. The k-epsilon model is selected as the turbulence model. In conclusions, the results show that the optimal arrangement of airfoil fins can be examined in terms of an objective function and it is obtained as the arrangement has the staggered number of 1.0. (C) 2015 Elsevier B.V. All rights reserved.
机译:在超临界CO2布雷顿循环中,PCHE技术的关键问题之一是实现高效紧凑的设计,从而能够增强热传递并降低压降。由于PCHE中微通道的复杂配置,该问题具有挑战性。在这项研究中,分析了一种创新的微通道,该微通道配备了一系列翼型鳍,以评估其性能。这样做时,通过使用针对韩国原子能研究所(KAERI)的超临界二氧化碳整体实验回路(SCIEL)的CFD分析,进行了具有各种设计参数的灵敏度分析,以配置翼型鳍的最佳布置。影响散热和水力性能的鳍片布置的主要几何参数是水平,垂直和交错间距。 ANSYS ICEM CFD和ANSYS CFX用于网格生成和计算。通过使用REFPROF软件数据库来使用CO2属性。热侧的入口温度为618 K,冷侧的入口温度为585K。对于垂直数为2.0的参考质量流率设置为1.2 g / s,这是大约30,000的雷诺数。为了研究雷诺数效应,质量流量从0.4更改为4.8 g / s。选择k-ε模型作为湍流模型。总之,结果表明,可以根据目标函数检查翼型鳍的最佳布置,并且该布置的交错数为1.0即可获得。 (C)2015 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Nuclear Engineering and Design》 |2015年第7期|110-118|共9页
  • 作者单位

    POSTECH, Dept Mech Engn, Pohang 790784, South Korea;

    POSTECH, Div Adv Nucl Engn, Pohang 790784, South Korea;

    Korea Inst Nucl Nonproliferat & Control, Taejon 305348, South Korea;

    POSTECH, Div Adv Nucl Engn, Pohang 790784, South Korea;

    Korea Inst Nucl Safety, Taejon 305338, South Korea;

    Korea Atom Energy Res Inst, Taejon 305353, South Korea;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号