...
首页> 外文期刊>Nuclear Engineering and Design >An interfacial shear term evaluation study for adiabatic dispersed air-water two-phase flow with the two-fluid model using CFD
【24h】

An interfacial shear term evaluation study for adiabatic dispersed air-water two-phase flow with the two-fluid model using CFD

机译:基于CFD的二流体模型绝热分散气-水两相流界面剪切项评估研究

获取原文
获取原文并翻译 | 示例
           

摘要

In commercially available Computational Fluid Dynamics (CFD) codes such as ANSYS CFX and Fluent, the interfacial shear term is missing in the field momentum equations. The derivation of the two-fluid model (Ishii and Hibiki, 2011) indicates the presence of this term as a momentum source in the right hand side of the field momentum equation. The inclusion of this term is considered important for proper modeling of the interfacial momentum coupling between phases. For separated flows, such as annular flow, the importance of the shear term is understood in the one-dimensional (1-D) form as the major mechanism by which the wall shear is transferred to the gas phase (Ishii and Mishima, 1984). For gas dispersed two-phase flow CFD simulations, it is important to assess the significance of this term in the prediction of phase distributions. In the first part of this work, the closure of this term in three-dimensional (3-D) form in a CFD code is investigated. For dispersed gas-liquid flow, such as bubbly or churn-turbulent flow, bubbles are dispersed in the shear layer of the continuous phase. The continuous phase shear stress is mainly due to the presence of the wall and the modeling of turbulence through the Boussinesq hypothesis. In a 3-D simulation, the continuous phase shear stress can be calculated from the continuous fluid velocity gradient, so that the interfacial shear term can be closed using the local values of the volume fraction and the total stress of liquid phase. This form also assures that the term acts as an action-reaction force for multiple phases. In the second part of this work, the effect of this term on the volume fraction distribution is investigated. For testing the model two-phase flow data measured at Purdue University is assessed. The interfacial shear term is assembled in ANSYS CFX. Simulation results are presented to assess the effect of the interfacial shear term on the phase distribution. (C) 2016 Elsevier B.V. All rights reserved.
机译:在诸如ANSYS CFX和Fluent之类的市售计算流体动力学(CFD)代码中,界面动量方程中缺少界面剪切项。双流体模型的推导(Ishii和Hibiki,2011)表明该项作为场动量方程右侧的动量源。对于正确建模各相之间的界面动量耦合,认为包含该术语很重要。对于诸如环流之类的分离流,剪切项的重要性以一维(1-D)形式被理解为壁剪传递到气相的主要机理(石井和三岛,1984) 。对于气体分散的两相流CFD模拟,重要的是评估该术语在预测相分布中的重要性。在本工作的第一部分中,研究了CFD代码中以三维(3-D)形式关闭此术语的过程。对于分散的气液流,例如气泡流或搅动湍流,气泡分散在连续相的剪切层中。连续相切应力主要归因于壁的存在以及通过Boussinesq假设进行的湍流建模。在3-D模拟中,可以根据连续的流体速度梯度来计算连续的相切应力,从而可以使用体积分数和液相的总应力的局部值来封闭界面剪切项。这种形式还确保了该术语在多个阶段中起着作用-反应的作用。在这项工作的第二部分中,研究了该术语对体积分数分布的影响。为了测试模型,评估了在普渡大学测量的两相流数据。界面剪切项在ANSYS CFX中组装。给出了仿真结果以评估界面剪切项对相分布的影响。 (C)2016 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Nuclear Engineering and Design》 |2017年第2期|389-398|共10页
  • 作者单位

    Purdue Univ, Sch Nucl Engn, W Lafayette, IN USA;

    Purdue Univ, Sch Nucl Engn, W Lafayette, IN USA;

    Purdue Univ, Sch Nucl Engn, W Lafayette, IN USA;

    Missouri Univ Sci & Technol, Dept Min & Nucl Engn, Rolla, MO USA;

    Naval Nucl Lab, Bettis Lab, West Mifflin, PA USA;

    Naval Nucl Lab, Bettis Lab, West Mifflin, PA USA;

    ANSYS UK Ltd, Oxford, England;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号