首页> 外文期刊>Nuclear Engineering and Design >A multi-scale and multi-physics simulation methodology with the state-of- the-art tools for safety analysis in Light Water Reactors applied to a Turbine Trip scenario (Part Ⅱ)
【24h】

A multi-scale and multi-physics simulation methodology with the state-of- the-art tools for safety analysis in Light Water Reactors applied to a Turbine Trip scenario (Part Ⅱ)

机译:一种多尺度和多物理仿真方法,具有最先进的水电反应器安全性分析工具,应用于涡轮机跳闸场景(第Ⅱ部分)

获取原文
获取原文并翻译 | 示例
       

摘要

The simulation of transient events is a requirement in the evaluation of the safety of Nuclear Power Plants. The Nuclear Authority request the operators to report the prediction of the evolution of the corresponding safety variables using simulation codes and methodologies that have proved to be validated against real data, whether experiments or plant measurements. Moreover, these simulation codes are used in the engineering work that a Nuclear Power Plant needs for planning a competitive and safe operation strategy. The available resources in simulation tools make possible complex analysis that can be used to predict realistic results. The consequence is the opportunity of making a safe and cost-efficient evaluation of the safety margins. Operators can use these tools for licensing to the Nuclear Authority and for calculation support of the operation of the reactor in whichever considered case.This paper presents a methodology that takes advantage of different simulation tools to join the capabilities in the Best Estimate (BE) simulation of transients for Light Water Reactors. This methodology works in different steps to account all the physics using the proper scale in a multi-physics and multi-scale approach. An automatic tool manages the data pre- and post-processing the corresponding input and output files. The purpose is to simulate the transient case in a coarse mesh and generate the boundary conditions for a simulation in more detailed scale with a finer mesh in the next step. Therefore, this methodology works generating the corresponding nodal cross section data to be used in coupled 3D thermal-hydraulics and neutron kinetics simulations run with system codes. A channel-by-channel core model is used in order to identify the critical fuel channel. Finally, the boundary conditions of the critical fuel channel are loaded in a pin-by-pin thermal-hydraulic model to perform the definitive Safety Analysis of the target variable, that is selected by the user.The methodology presented in this paper, is applied to a real fast transient case, a Turbine Trip event of fuel cycle 18 in Kernkraftwerk Leibstadt, KKL. The results of each step of this methodology have been validated against the available plant data and the selected target safety variable, the Critical Power Ratio at pin level, has been code-to-code verified. The results show good agreement proving the effectivity of this methodology.
机译:瞬态事件的仿真是评估核电厂安全性的要求。核管理局要求运营商使用已证明的实验或植物测量的实验或植物测量来报告使用已经验证的模拟代码和方法的相应安全变量的演变的预测。此外,这些仿真代码用于工程工作,即核电站规划竞争力和安全运行策略的需求。仿真工具中的可用资源使得可用于预测现实结果的复杂分析。结果是为安全利润率提供安全和成本高效的评估。操作员可以使用这些工具在核权威机构中使用这些工具,并在任何考虑的案例中计算反应堆操作的支持。本文提出了一种利用不同仿真工具的方法,以便在最佳估计(BE)模拟中加入功能轻水反应器的瞬变。该方法在不同的步骤中使用不同的步骤来使用多种物理和多种方法的适当比例来解决所有物理。自动工具在预先处理的数据和后处理相应的输入和输出文件中管理数据。目的是在粗地网格中模拟瞬态外壳,并在下一步中使用更精细的网格更详细的刻度生成模拟的边界条件。因此,该方法工作地生成要在耦合的3D热液压和中子动力学模拟中使用的相应节点横截面数据,并使用系统代码运行。使用通道频道核心模型以识别临界燃料通道。最后,临界燃料通道的边界条件加载到逐针热液模型中,以执行由用户选择的目标变量的最终安全性分析。本文呈现的方法,应用了本文的方法对于真正的快速瞬态案例,在Kernkraftwerk Leibstadt,KKL中的燃油循环18的涡轮机跳闸事件。该方法的每个步骤的结果已经针对可用的工厂数据和所选目标安全变量验证,PIN级别的临界功率比已被验证代码代码。结果表明,良好的一致性证明了这种方法的有效性。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号