首页> 外文期刊>Nuclear Engineering and Design >Comparison of experimental and simulated critical heat flux tests with various cladding alloys: Sensitivity of iron-chromium-aluminum (FeCrAl) to heat transfer coefficients and material properties
【24h】

Comparison of experimental and simulated critical heat flux tests with various cladding alloys: Sensitivity of iron-chromium-aluminum (FeCrAl) to heat transfer coefficients and material properties

机译:与各种覆层合金的实验和模拟临界热通量测试的比较:铁铬铝(FeCrAl)对传热系数和材料性能的敏感性

获取原文
获取原文并翻译 | 示例
       

摘要

In this work we analyze the differences between previous transient critical heat flux (CHF) experiments using iron-chromium-aluminum (FeCrAl), Inconel 600, and stainless steel 316 (SS316) alloy test sections and best-estimate modeling results from widely-used nuclear engineering systems and subchannel analysis tools. FeCrAl is an Accident Tolerant Fuel (ATF) candidate cladding material. The thermal hydraulic performance and safety characteristics of FeCrAl are being evaluated to determine viability as a cladding material in Light Water Reactors (LWRs). In this study, the results of the CHF experiments conducted at atmospheric pressure and fixed inlet coolant temperature and mass flux are compared to models built in the fifth version of the Reactor Excursion and Leak Analysis Program (RELAP5-3D) and CTF, the modernized version of COBRA-TF developed by the Consortium for Advanced Simulation of LWRs (CASL). Results from RELAP5-3D and CTF showed differences from the experiments and from each other in predicting CHF. In the Inconel 600 case, both computational tools overpredicted CHF, which led to an underprediction in the tube outer surface temperature. In the SS316 and FeCrAl cases, CHF was underpredicted by the codes, leading to an overprediction of the tube outer surface temperature.To understand the discrepancies in CHF and post-CHF predictions, studies were performed using RELAP5-3D and RAVEN to determine the sensitivity of CHF and peak test section temperature, an analog to peak cladding temperature (PCT), to heat transfer coefficients, a CHF multiplier, and uncertainties in the thermal conductivity and volumetric heat capacity. We found that CHF depends most strongly on the CHF multiplier and thermophysical properties. A combination of these factors that produced the best match to the experiment based on CHF, PCT, and the total energy deposited into the tube was determined. The best match parameters were able to provide best-estimate predictions of the CHF and integral heat flux, but were still conservative when predicting the PCT. The best match set of parameters developed in this paper are intended only as a demonstration of an approach that could be applied in the future with a larger set of experiments to produce more accurate models of CHF and post-CHF behavior.
机译:在这项工作中,我们分析了先前使用铁铬铝(FeCrAl),Inconel 600和不锈钢316(SS316)合金测试段的瞬态临界热通量(CHF)实验之间的差异,以及广泛使用的最佳估计建模结果核工程系统和子通道分析工具。 FeCrAl是一种耐事故燃料(ATF)候选覆层材料。正在评估FeCrAl的热水力性能和安全特性,以确定轻水反应堆(LWRs)中作为包层材料的可行性。在这项研究中,将在大气压,固定进口冷却液温度和质量通量下进行的CHF实验结果与“反应堆漂移和泄漏分析程序”第五版(RELAP5-3D)和现代化版本的CTF中建立的模型进行了比较。由LWR高级仿真联盟(CASL)开发的COBRA-TF的结果。 RELAP5-3D和CTF的结果显示,在预测CHF方面与实验以及彼此之间存在差异。在Inconel 600的情况下,两个计算工具都高估了CHF,这导致管外表面温度的低估。在SS316和FeCrAl情况下,代码对CHF的预测不足,导致对管外表面温度的高估。为了了解CHF和CHF后预测的差异,使用RELAP5-3D和RAVEN进行了研究以确定灵敏度CHF和峰值测试段温度,峰值包层温度(PCT)的模拟,传热系数,CHF乘数以及热导率和体积热容的不确定性。我们发现CHF最主要地取决于CHF乘数和热物理性质。确定了与CHF,PCT和沉积在试管中的总能量最匹配的所有这些因素的组合。最佳匹配参数能够提供对CHF和积分热通量的最佳估计,但是在预测PCT时仍然很保守。本文中开发的最佳匹配参数集仅是为了说明一种方法,该方法可以在将来与更多的实验结合使用,以产生更精确的CHF和CHF后行为模型。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号